CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 25 Instructor: Paul Beame

What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special
 - for example the Clique problem is easy on "interval graphs".
 - search the literature to see if special cases already solved

2

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Maybe you can't get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
 - I Given graph G=(V,E), start with an empty cover
 - While there are still edges in E left
 - Choose an edge e={u,v} in E and add both u and v to the cover
 - Remove all edges from E that touch either u or
 v
 - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Recent research has classified problems based on what kinds of approximations are possible if P≠NP
 - Best: $(1+\varepsilon)$ factor for any $\varepsilon > 0$.
 - packing and some scheduling problems, TSP in plane
 - Some fixed constant factor > 1, e.g. 2, 3/2, 100
 - Vertex Cover, TSP in space, other scheduling problems
 - I Θ(log n) factor
 - Set Cover, Graph Partitioning problems
 - Worst: $\Omega(n^{1-\epsilon})$ factor for any $\epsilon > 0$
 - Clique, Independent-Set, Coloring

4

What to do if the problem you want to solve is NP-hard

- Try an algorithm that is provably fast "on average".
 - I To even try this one needs a model of what a typical instance is.
 - Typically, people consider "random graphs"
 - e.g. all graphs with a given # of edges are equally likely
 - Problems:
 - real data doesn't look like the random graphs
 - I distributions of real data aren't analyzable

What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints in a more efficient way and hope it is quick enough
 - e.g. back-tracking search
 - For Satisfiability there are 2ⁿ possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - e.g. After setting $x_1 \leftarrow 1$, $x_2 \leftarrow 0$ we don't even need to set x_3 or x_4 to know that it won't satisfy $(-x_1 \vee x_2) \wedge (-x_2 \vee x_3) \wedge (x_4 \vee -x_3) \wedge (x_1 \vee -x_4)$
 - For Satisfiability this seems to run in times like 2^{n/20} on typical hard instances.
 - Related technique: branch-and-bound

6

What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - I Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We'll mention several on following slides

Heuristic algorithms for NP-hard problems

- Iocal search for optimization problems
 - I need a notion of two solutions being neighbors
 - I Start at an arbitrary solution S
 - While there is a neighbor T of S that is better than S
 - I S←T
- Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

e.g., Neighboring solutions for TSP

Solution S Solution T

Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other

Heuristic algorithms for NP-hard problems

- randomized local search
 - I start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers
- simulated annealing
 - like local search but at each step sometimes move to a worse neighbor with some probability
 - I probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
 - I helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
 - I analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

10

Heuristic algorithms for NP-hard problems

- genetic algorithms
 - I view each solution as a string (analogy with DNA)
 - I maintain a population of good solutions
 - allow random mutations of single characters of individual solutions
 - I combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
 - I little evidence that they work well and they are usually very slow
 - as much religion as science

11

Heuristic algorithms

- artificial neural networks
 - I based on very elementary model of human neurons
 - I Set up a circuit of artificial neurons
 - l each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - I Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - I The network is now ready to use
 - useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

12

Other fun directions

- DNA computing
 - I Each possible hint for an NP problem is represented as a string of DNA
 - fill a test tube with all possible hints
 - I View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
 - For each test in turn
 - I use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - I If any string remains the answer is a YES.
 - Relies on fact that Avogadro's # 6 x 10²³ is large to get enough strings to fit in a test-tube.
 - I Error-prone & so far only problem sizes less than 15!

Other fun directions

- Quantum computing
 - I Use physical processes at the quantum level to implement weird kinds of circuit gates
 - unitary transformations
 - Quantum objects can be in a superposition of many pure states at once
 - I can have ${\bf n}$ objects together in a superposition of ${\bf 2}^{\bf n}$ states
 - I Each quantum circuit gate operates on the whole superposition of states at once
 - inherent parallelism
 - Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.

4