CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 24
Instructor: Paul Beame

Steps to Proving Problem R is NP-complete

Show R is NP-hard:
| State:'Reduction is from NP-hard Problem L’
I Show what the map is
| Argue that the map is polynomial time
I Argue correctness: two directions Yes for L implies Yes for R and vice versa.
Show R is in NP
I State what hint is and why it works
\| Argue that it is polynomial-time to check.

Problems we already know are NP-complete

I. Satisfiability

II Independent-Set

- Clique

IV Vertex Cover
| There are 1000's of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause
(i.e., in 3-CNF), is F satisfiable?

Claim: 3-SAT is NP-complete

- Proof:
| $3-S A T \in N P$
Hint is a satisfying assignment
Just like Satisfiability it is polynomial-time to check the hint

Satisfiability $\leq{ }^{\mathrm{P}} 3$-SAT

Reduction:
mapping CNF formula F to another CNF formula G that has precisely 3 variables per clause.
G has one or more clauses for each clause of F
G will have extra variables that don't appear in F
for each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C

Satisfiability $\leq^{\mathrm{p}} 3$-SAT

- Goal:

An assignment A to the original variables makes clause C true in F iff
there is an assignment to the extra variables that together with the assignment A will make all new clauses corresponding to C true.
Define the reduction clause-by-clause
\| We'll use variable names z_{j} to denote the extra variables related to a single clause C to simplify notation
in reality, two different original clauses will not share z_{j}

Satisfiability $\leq{ }^{\mathrm{P}} 3$-SAT

For each clause C in F :
If If C has 3 variables:
Put C in G as is
If C has 2 variables, e.g. $C=\left(x_{1} \vee \neg x_{3}\right)$
Use a new variable z and put two clauses in G
$\left(x_{1} \vee \neg x_{3} \vee z\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg z\right)$
If original C is true under assignment A then both new clauses will be true under A
If new clauses are both true under some assignment B then the value of z doesn't help in one of the two clauses so C must be true under B

Satisfiability $\leq^{\mathrm{p}} 3$-SAT

| If C has 1 variables: e.g. $C=x_{1}$ Use two new variables z_{1}, z_{2} and put 4 new clauses in G
$\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right)$ $\wedge\left(x_{1} \vee z_{1} \vee z_{2}\right)$
If original C is true under assignment A then all new clauses will be true under A
If new clauses are all true under some assignment B then the values of z_{1} and z_{2} doesn't help in one of the 4 clauses so C must be true under B

Satisfiability $\leq^{\mathrm{P}} 3$-SAT

I If C has $k \geq 4$ variables: e.g. $C=\left(x_{1} \vee \ldots \vee x_{k}\right)$ Use $k-3$ new variables z_{2}, \ldots, z_{k-2} and put $k-2$ new clauses in G
$\left(x_{1} \vee x_{2} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee x_{3} \vee z_{3}\right) \wedge\left(\neg z_{3} \vee x_{4} \vee z_{4}\right) \wedge .$. $\wedge\left(\neg z_{k-3} \vee x_{k-2} \vee z_{k-2}\right) \wedge\left(\neg z_{k-2} \vee x_{k-1} \vee x_{k}\right)$
If original C is true under assignment A then some x_{i} is true for $i \leq k$. By setting z_{i} true for all $j<i$ and false for all $j \geq i$, we can extend A to make all new clauses true.
If new clauses are all true under some assignment B then some x_{i} must be true for $i \leq k$ because $z_{2} \wedge\left(\neg z_{2} \vee z_{3}\right) \wedge \ldots \wedge\left(\neg z_{k-3} \vee z_{k-2}\right) \wedge \neg z_{k-2}$ is not satisfiable

Graph Colorability

- Defn: Given a graph $G=(V, E)$, and an integer k, a k-coloring of G is
\| an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
. 3-Color: Given a graph $G=(V, E)$, does G have a 3-coloring?
II Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:

1 Hint is an assignment of red,green,blue to the vertices of G
Easy to check that each edge is colored correctly 10

3-SAT $\leq{ }^{\mathrm{P}} 3$-Color

Reduction:

We want to map a 3-CNF formula F to a graph G so that
G is 3 -colorable iff F is satisfiable

3-SAT $\leq^{\mathrm{p}} 3$-Color

Base Triangle

