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Polynomial-time
reduction L ≤pR

inputs for L inputs for R

x
y

T
computable by a

program in polynomial-time

yes yes

no
no

L answers yes to x ⇔ R answers yes to T(x)

3

e.g., Independent-Set ≤pClique
❚ Define reduction T, that maps <G,k> to <G,k>, where G

is the complement graph of G, i.e. G has an edge
exactly when G doesn’t.
❙ Clearly polynomial time.

❚ Correctness
❙ <G,k> is a YES for Independent-Set

❙ iff there is a subset U of the vertex set of G with |U| ≥ k such that
no two vertices in U are joined by an edge in G

❙ iff there is a subset U of the vertex set of G with |U| ≥ k such that
every pair of vertices in U is joined by an edge in G

❙ iff <G,k> is a YES for Clique
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NP-hardness &
NP-completeness

❚ Definition:  A problem R is NP-hard iff
every problem L∈NP satisfies L ≤pR

❚ Definition:  A problem R is NP-complete iff
R is NP-hard and R ∈NP

❚ Not obvious that such problems even exist!
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Properties of polynomial-time
reductions

❚ Theorem:  If  L ≤pR and R is in P then L is
also in P

❚ Theorem:  If  L ≤pR and R ≤pS then L ≤pS

❚ Proof idea:
❙ Compose the reduction T from L to R with the

reduction T’ from R to S to get a new
reduction  T’’(x)=T’(T(x)) from L to S.
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Cook’s Theorem& implications
❚ Theorem (Cook 1971):  Satisfiability is

NP-complete

❚ Corollary: R is NP-hard iff  Satisfiability ≤pR
• (or Q ≤pR for any NP-complete problem Q)

❚ Proof:
❙ If R is NP-hard then every problem in NP polynomial-

time reduces to R, in particular Satisfiability does
since it is in NP

❙ For any problem L in NP, L ≤pSatisfiability and so if
Satisfiability ≤pR we have L ≤p R.

❘ therefore R is NP-hard if Satisfiability ≤pR
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Another NP-complete problem:
Satisfiability ≤pIndependent-Set

❚ Reduction:
❙ mapping CNF formula F to a pair <G,k>
❙ Let m be the number of clauses of F
❙ Create a vertex in G for each literal in F
❙ Join two vertices u, v in G by an edge iff

❘ u and v correspond to literals in the same clause
of F, (green edges) or

❘ u and v correspond to literals x and ¬x (or vice
versa) for some variable x.  (red edges).

❙ Set k=m
❙ Clearly polynomial-time 8

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3
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Satisfiability ≤pIndependent-Set

❚ Correctness:
❙ If F is satisfiable then there is some assignment that

satisfies at least one literal in each clause.

❙ Consider the set U in G corresponding to the first
satisfied literal in each clause.

❘ |U|=m

❘ Since U has only one vertex per clause, no two vertices in U
are joined by green edges

❘ Since a truth assignment never satisfies both x and ¬x, U
doesn’t contain vertices labeled both x and ¬x and so no
vertices in U are joined by red edges

❘ Therefore G has an independent set, U, of size at least m

❙ Therefore <G,m> is a YES for independent set.
10

Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3

 1       0      1         1      0      1         1       0       1

Given assignment x1=x2=x3=x4=1,
U is as circled

U
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Satisfiability ≤pIndependent-Set

❚ Correctness continued:
❙ If <G,m> is a YES for Independent-Set then there is a

set U of m vertices in G containing no edge.
❘ Therefore U has precisely one vertex per clause because of

the green edges in G.

❘ Because of the red edges in G, U does not contain vertices
labeled both x and ¬x

❘ Build a truth assignment  A that makes all literals labeling
vertices in U true and for any variable not labeling a vertex in
U, assigns its truth value arbitrarily.

❘ By construction, A satisfies F

❙ Therefore F is a YES for Satisfiability.
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Satisfiability ≤pIndependent-Set

F:   (x1 ∨ ¬x3 ∨ x4) ∧ ( x2 ∨ ¬x4 ∨ x3) ∧ ( x2 ∨ ¬x1 ∨ x3)

x1

¬x3 ¬x4

¬x1

x2

x2

x4 x3x3

Given U, satisfying assignment
 is x1=x3=x4=0, x2=0 or 1

   0       1     0         ?       1      0         ?       1      0 
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Independent-Set is NP-complete
❚ We just showed that Independent-Set is NP-

hard and we already knew Independent-Set is in
NP.

❚ Corollary: Clique is NP-complete
❙ We showed already that

Independent-Set ≤p Clique and Clique is in
NP.
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Vertex Cover
❚ Given an undirected graph G=(V,E) and an

integer k is there a subset W of V of size at most
k such that every edge of G has at least one
endpoint in W?  (i.e. W covers all vertices of G).

❚ Observation:
❙ W is a vertex cover of G iff every vertex in V-W has at

most one endpoint of any edge in G, i.e. V-W is
independent. W is a

vertex cover
V-W is an 

independent set
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Independent-Set ≤p Vertex
Cover

❚ Reduction:
❙ Map  <G,k> to <G,|V|-k>.
❙ Correctness follows from Observation
❙ Polynomial-time

❚ Vertex Cover is in NP
❙ Hint is the cover set W.
❙ Polynomial-time to check.

❚ Vertex Cover is NP-complete
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Steps to Proving Problem R is
NP-complete

❚ Show R is NP-hard:
❙ State:‘Reduction is from NP-hard Problem L’
❙ Show what the map is
❙ Argue that the map is polynomial time
❙ Argue correctness:  two directions Yes for L

implies Yes for R and vice versa.

❚ Show R is in NP
❙ State what hint is and why it works
❙ Argue that it is polynomial-time to check.


