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Lecture 22

Instructor: Paul Beame
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Polynomial time

❚ Define 3 (polynomial-time) to be
❙ the set of all decision problems solvable by

algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

❚ 3 = Uk≥0TIME(nk)
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The complexity class 13

❚ 13 consists of all decision problems
where one can verify the YES answers
efficiently (in polynomial time) given a
short (polynomial-size) hint.

❚ Some problems in NP and their hints
❙ DecisionTSP: the tour itself,
❙ Independent-Set, Clique: the set U
❙ Satisfiability: an assignment that makes F

true.
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P and NP

NP

P
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NP-hardness &
NP-completeness

❚ Some problems in NP seem hard
❙ people have looked for efficient algorithms for

them for hundreds of years without success

❚ However
❙ nobody knows how to prove that they are

really hard to solve, i.e. P≠ NP
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NP-hardness &
NP-completeness

❚ Alternative approach
❙ show that they are at least as hard as any

problem in NP

❚ Rough definition:
❙ A problem is NP-hard iff it is at least as hard

as any problem in NP
❙ A problem is NP-complete iff it is both

❘ NP-hard

❘ in NP
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Showing one problem is at least
as hard as another

❚ Reductions
❙ Used before in case of considering whether

problems could be solve by programs
❘  we allowed any old program T as the reduction
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Polynomial-time reductions

❚ We have a problem using our ordinary
notion of reduction in complexity
❙ We want that if L ≤ R then, up to a small

amount of slop, L is at least as easy as R
❙ But...

❘ our reduction T might take a really, really long time
even though it is computable by a program

❙ Solution:
❘ require that program T be efficient, too.
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Reduction L ≤ R
inputs for L inputs for R

T

x y

L(x)=R(T(x))
Intuition:  L is at least as easy as R or, equivalently,

R is at least as hard as L

computable by a 
program
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Decision Problems:
Reduction L ≤ R

inputs for L inputs for R

T

x
y

computable by a
program

yes yes

no
no

L answers yes to x ⇔ R answers yes to T(x)
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Polynomial-time
reduction L ≤pR

inputs for L inputs for R

x
y

T
computable by a

program in polynomial-time

yes yes

no
no

L answers yes to x ⇔ R answers yes to T(x)
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Polynomial-time reductions
preserve polynomial time

❚ Theorem:  If  L ≤pR and R is in P then L is
also in P

❚ Proof:
❙ Let T be reduction showing L ≤pR that runs in

polynomial time, say cnt.
❙ Let A be the algorithm solving R that runs in

polynomial time, say dnr

❙ Our algorithm B for L first runs T and then
runs A on the output of T
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Running time of B

❚ Running T takes time at most cnt.
❙ The output of T has at most c’nt bits for some

constant c’ because we can only create  a
constant number of output bits per output per
step.

❚ Running A on T’s output takes time at
most d(c’nt)r.
❙ The input of A is size at most c’nt.

❚ Total run-time is O(ntr) which is polynomial
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NP-hardness &
NP-completeness

❚ Definition:  A problem R is NP-hard iff
every problem L∈NP satisfies L ≤pR

❚ Definition:  A problem R is NP-complete iff
R is NP-hard and R ∈NP

❚ Not obvious that such problems even exist!
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e.g., Independent-Set ≤pClique
❚ Independent-Set:

❙ Given a graph G=(V,E) and an integer k, is there a subset U of V
with |U| ≥ k such that no two vertices in U are joined by an edge.

❚ Clique:
❙ Given a graph G=(V,E) and an integer k, is there a subset U of V

with |U| ≥ k such that every pair of vertices in U is joined by an
edge.

❚ What is the reduction T?
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Cook’s Theorem
❚ Theorem (Cook 1971):  Satisfiability is

NP-complete

❚ Proof idea:
❙ Given any problem L in NP

❙ Look at the algorithm that verifies the hint for L

❙ One can write a polynomial-size CNF formula FL,x that
that can be made true iff the verification algorithm for
L, on input x and the hint, liked the hint for L

❙ FL,x is satisfiable iff L answers YES on input x

❙ The transformation from x to FL,x can be computed
efficiently
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P and NP

NP

P

NP-complete

NP-hard


