CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 22
Instructor: Paul Beame

Polynomial time

Define P (polynomial-time) to be

the set of all decision problems solvable by
algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

P = U, TIME(n¥)

The complexity class NP

NP consists of all decision problems
where one can verify the YES answers
efficiently (in polynomial time) given a
short (polynomial-size) hint.

Some problems in NP and their hints
DecisionTSP: the tour itself,
Independent-Set, Clique: the set U

Satisfiability: an assignment that makes F
true.

P and NP

NP-hardness &
NP-completeness

Some problems in NP seem hard

people have looked for efficient algorithms for
them for hundreds of years without success

However

nobody knows how to prove that they are
really hard to solve, i.e. PZ NP

NP-hardness &
NP-completeness

Alternative approach

show that they are at least as hard as any
problem in NP

Rough definition:
A problem is NP-hard iff it is at least as hard
as any problem in NP
A problem is NP-complete iff it is both
NP-hard
in NP

Showing one problem is at least
as hard as another

Reductions
Used before in case of considering whether
problems could be solve by programs
we allowed any old program T as the reduction

Polynomial-time reductions

We have a problem using our ordinary
notion of reduction in complexity
We want that if L < R then, up to a small
amount of slop, L is at least as easy as R
But...

our reduction T might take a really, really long time
even though it is computable by a program

Solution:
require that program T be efficient, too.

ReductionL<R

inputs for L inputs for R

T
computable by a
program

LeO=R(T(x))
Intuition: L is at least as easy as R or, equivalently,
Ris at least as hard as L

Decision Problems:
ReductionL<R

inputs for L inputs for R

computable by a
program

L answers yes to x = R answers yes to T(x)
10

Polynomial-time
reduction L <PR

inputs for L inputs for R

computable by a
program in polynomial-time

L answers yes to x = R answers yes to T(x)

Polynomial-time reductions
preserve polynomial time

Theorem: If L<PRandRisin P then L is
alsoin P
Proof:

Let T be reduction showing L <R that runs in
polynomial time, say cnt.

Let A be the algorithm solving R that runs in
polynomial time, say dn'

Our algorithm B for L first runs T and then
runs A on the output of T

Running time of B

Running T takes time at most cn'.

The output of T has at most ¢’nt bits for some
constant ¢’ because we can only create a
constant number of output bits per output per
step.

Running A on T's output takes time at
most d(c’n)".

The input of A is size at most c'nt.
Total run-time is O(n') which is polynomial

13

NP-hardness &
NP-completeness

Definition: A problem R is NP-hard iff
every problem LONP satisfies L <PR

Definition: A problem R is NP-complete iff
R is NP-hard and R ONP

Not obvious that such problems even exist!

e.g., Independent-Set <°Clique

Independent-Set:
Given a graph G=(V,E) and an integer k, is there a subset U of V
with |U| = k such that no two vertices in U are joined by an edge.
Clique:
Given a graph G=(V,E) and an integer k, is there a subset U of V

with |U| = k such that every pair of vertices in U is joined by an
edge.

What is the reduction T?

Cook’s Theorem

Theorem (Cook 1971): Satisfiability is
NP-complete

Proof idea:
Given any problem L in NP
Look at the algorithm that verifies the hint for L
One can write a polynomial-size CNF formula F,_, that
that can be made true iff the verification algorithm for
L, on input x and the hint, liked the hint for L
F_ . is satisfiable iff L answers YES on input x
The transformation from x to F_, can be computed
efficiently

P and NP

NP-complete

