CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 22 Instructor: Paul Beame

Polynomial time

- Define P (polynomial-time) to be
 - I the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

$P = U_{k \ge 0} TIME(n^k)$

The complexity class NP

- NP consists of all decision problems where one can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint.
- Some problems in NP and their hints
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.

3

NP-hardness & NP-completeness

- Some problems in NP seem hard
 people have looked for efficient algorithms for them for hundreds of years without success
- However
 - I nobody knows how to **prove** that they are really hard to solve, i.e. P≠ NP

NP-hardness & NP-completeness

I show that they are at least as hard as any problem in NP

Rough definition:

- A problem is NP-hard iff it is at least as hard as any problem in NP
- A problem is NP-complete iff it is both

l in NP

Showing one problem is at least as hard as another

- Reductions
 - Used before in case of considering whether problems could be solve by programs
 we allowed any old program T as the reduction

Theorem: If L ≤^PR and R is in P then L is also in P

Proof:

- Let T be reduction showing L ≤^PR that runs in polynomial time, say cn^t.
- Let A be the algorithm solving R that runs in polynomial time, say dn^r
- Our algorithm B for L first runs T and then runs A on the output of T

12

Running time of **B**

- Running T takes time at most cn^t.
 - I The output of T has at most c'n¹ bits for some constant c' because we can only create a constant number of output bits per output per step.
- Running A on T's output takes time at most d(c'n^t)^r.
 - I The input of A is size at most c'nt.
- Total run-time is O(n^{tr}) which is polynomial

13

NP-hardness & NP-completeness

- Definition: A problem R is NP-hard iff every problem L∈ NP satisfies L ≤^PR
- Definition: A problem R is NP-complete iff R is NP-hard and $R \in NP$

14

Not obvious that such problems even exist!

