CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 22
Instructor: Paul Beame

Polynomial time

Define P (polynomial-time) to be
I the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
$P=\bigcup_{k \geq 0} \operatorname{TIME}\left(n^{k}\right)$

The complexity class NP

- NP consists of all decision problems where one can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint.

Some problems in NP and their hints
| DecisionTSP: the tour itself,
I Independent-Set, Clique: the set U
I Satisfiability: an assignment that makes F true.

NP-hardness \& NP-completeness

II Some problems in NP seem hard
I people have looked for efficient algorithms for them for hundreds of years without success
\| However
I nobody knows how to prove that they are really hard to solve, i.e. $P \neq N P$

P and NP

> NP-hardness \& NP-completeness
> - Alternative approach

> I show that they are at least as hard as any problem in NP

> Rough definition:
> | A problem is NP-hard iff it is at least as hard as any problem in NP
> I A problem is NP-complete iff it is both NP-hard
> in NP

Showing one problem is at least as hard as another

Reductions
Used before in case of considering whether problems could be solve by programs we allowed any old program T as the reduction

Polynomial-time reductions

- We have a problem using our ordinary notion of reduction in complexity
I We want that if $L \leq R$ then, up to a small amount of slop, L is at least as easy as R \| But... our reduction T might take a really, really long time even though it is computable by a program
I Solution: require that program T be efficient, too.

Reduction $\mathrm{L} \leq \mathbf{R}$

$$
L(x)=R(T(x))
$$

Intuition: L is at least as easy as R or, equivalently, R is at least as hard as L

Decision Problems: Reduction $L \leq R$

L answers yes to $x \Leftrightarrow R$ answers yes to $T(x)$

Polynomial-time reductions preserve polynomial time

|l Theorem: If $L \leq^{P} R$ and R is in P then L is also in P

- Proof:

1 Let T be reduction showing $L \leq^{p} R$ that runs in polynomial time, say cn^{t}.
I Let A be the algorithm solving R that runs in polynomial time, say dn^{r}
I Our algorithm B for L first runs T and then runs A on the output of T

Running time of B

- Running T takes time at most cn^{t}.
\| The output of T has at most c'nt bits for some constant c' because we can only create a constant number of output bits per output per step.
- Running A on T's output takes time at most d(c'nt $)^{r}$.
The input of A is size at most $c^{\prime} n^{t}$.
- Total run-time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{tr}}\right)$ which is polynomial

NP-hardness \& NP-completeness

- Definition: A problem R is NP-hard iff every problem $L \in N P$ satisfies $L \leq^{p} R$
- Definition: A problem R is NP-complete iff R is NP-hard and $R \in N P$

Not obvious that such problems even exist!

e.g., Independent-Set $\leq{ }^{\mathrm{P}}$ Clique

|| Independent-Set:
Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

- Clique:

Given a graph $G=(V, E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

- What is the reduction T ?

Cook's Theorem

\| Theorem (Cook 1971): Satisfiability is NP-complete

Proof idea:
| Given any problem L in NP
1 Look at the algorithm that verifies the hint for L

- One can write a polynomial-size CNF formula $F_{L, x}$ that that can be made true iff the verification algorithm for L, on input x and the hint, liked the hint for L
I $F_{L, x}$ is satisfiable iff L answers YES on input x
1 The transformation from x to $F_{L, x}$ can be computed efficiently

