
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 22

Instructor: Paul Beame

2

Polynomial time

❚ Define 3 (polynomial-time) to be
❙ the set of all decision problems solvable by

algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

❚ 3 = Uk≥0TIME(nk)

3

The complexity class 13

❚ 13 consists of all decision problems
where one can verify the YES answers
efficiently (in polynomial time) given a
short (polynomial-size) hint.

❚ Some problems in NP and their hints
❙ DecisionTSP: the tour itself,
❙ Independent-Set, Clique: the set U
❙ Satisfiability: an assignment that makes F

true.
4

P and NP

NP

P

5

NP-hardness &
NP-completeness

❚ Some problems in NP seem hard
❙ people have looked for efficient algorithms for

them for hundreds of years without success

❚ However
❙ nobody knows how to prove that they are

really hard to solve, i.e. P≠ NP

6

NP-hardness &
NP-completeness

❚ Alternative approach
❙ show that they are at least as hard as any

problem in NP

❚ Rough definition:
❙ A problem is NP-hard iff it is at least as hard

as any problem in NP
❙ A problem is NP-complete iff it is both

❘ NP-hard

❘ in NP

2

7

Showing one problem is at least
as hard as another

❚ Reductions
❙ Used before in case of considering whether

problems could be solve by programs
❘ we allowed any old program T as the reduction

8

Polynomial-time reductions

❚ We have a problem using our ordinary
notion of reduction in complexity
❙ We want that if L ≤ R then, up to a small

amount of slop, L is at least as easy as R
❙ But...

❘ our reduction T might take a really, really long time
even though it is computable by a program

❙ Solution:
❘ require that program T be efficient, too.

9

Reduction L ≤ R
inputs for L inputs for R

T

x y

L(x)=R(T(x))
Intuition: L is at least as easy as R or, equivalently,

R is at least as hard as L

computable by a
program

10

Decision Problems:
Reduction L ≤ R

inputs for L inputs for R

T

x
y

computable by a
program

yes yes

no
no

L answers yes to x ⇔ R answers yes to T(x)

11

Polynomial-time
reduction L ≤pR

inputs for L inputs for R

x
y

T
computable by a

program in polynomial-time

yes yes

no
no

L answers yes to x ⇔ R answers yes to T(x)

12

Polynomial-time reductions
preserve polynomial time

❚ Theorem: If L ≤pR and R is in P then L is
also in P

❚ Proof:
❙ Let T be reduction showing L ≤pR that runs in

polynomial time, say cnt.
❙ Let A be the algorithm solving R that runs in

polynomial time, say dnr

❙ Our algorithm B for L first runs T and then
runs A on the output of T

3

13

Running time of B

❚ Running T takes time at most cnt.
❙ The output of T has at most c’nt bits for some

constant c’ because we can only create a
constant number of output bits per output per
step.

❚ Running A on T’s output takes time at
most d(c’nt)r.
❙ The input of A is size at most c’nt.

❚ Total run-time is O(ntr) which is polynomial

14

NP-hardness &
NP-completeness

❚ Definition: A problem R is NP-hard iff
every problem L∈NP satisfies L ≤pR

❚ Definition: A problem R is NP-complete iff
R is NP-hard and R ∈NP

❚ Not obvious that such problems even exist!

15

e.g., Independent-Set ≤pClique
❚ Independent-Set:

❙ Given a graph G=(V,E) and an integer k, is there a subset U of V
with |U| ≥ k such that no two vertices in U are joined by an edge.

❚ Clique:
❙ Given a graph G=(V,E) and an integer k, is there a subset U of V

with |U| ≥ k such that every pair of vertices in U is joined by an
edge.

❚ What is the reduction T?

16

Cook’s Theorem
❚ Theorem (Cook 1971): Satisfiability is

NP-complete

❚ Proof idea:
❙ Given any problem L in NP

❙ Look at the algorithm that verifies the hint for L

❙ One can write a polynomial-size CNF formula FL,x that
that can be made true iff the verification algorithm for
L, on input x and the hint, liked the hint for L

❙ FL,x is satisfiable iff L answers YES on input x

❙ The transformation from x to FL,x can be computed
efficiently

17

P and NP

NP

P

NP-complete

NP-hard

