CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 21
Instructor: Paul Beame

Computational Complexity

We've been interested in solving problems
by using efficient algorithms.

Algorithm run-times we've liked:
O(n), O(nlog n), O(n?), O(hm), O(n3),
O(n2.81)
Bounded by a polynomial in # of bits in input

Ones we haven't: O(2"), O((1.618)")

Polynomial versus exponential

We'll say any algorithm whose run-time is
polynomial is good
bigger than polynomial is bad

Note:
n1% js bigger than (1.001)" for most practical values
of n but usually such run-times don’t show up
There are algorithms that have run-times like O(2"22)
and these may be useful for small input sizes.

Decision problems

Computational complexity usually analyzed
using decision problems
answer is just 1 or O (yes or no).

Why?
much simpler to deal with
can just encode each bit of a problem that has a
longer answer as a decision problem
certain definitions such as NP only make sense in
terms of decision problems

Computational Complexity

Classify problems according to the amount of
computational resources used by the best
algorithms that solve them

Recall:
worst-case running time of an algorithm
max # steps algorithm takes on any input of size n
Define:

TIME(f(n)) to be the set of all decision problems
solved by algorithms having worst-case running time

O(f(m)

Polynomial time

Define P (polynomial-time) to be

the set of all decision problems solvable by
algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

P = U, ,TIME(nk)

Beyond P?

There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

e.g. decisionTSP:
Given a weighted graph G and an integer Kk,
does there exist a tour that visits all vertices
in G having total weight at most k?

Solving TSP given a solution to
decisionTSP

Use binary search and several calls to
decisionTSP to figure out what the exact total
weight of the shortest tour is.

Upper and lower bounds to start are n times largest
and smallest weights of edges, respectively

Call W the weight of the shortest tour.
Now figure out which edges are in the tour

For each edge e in the graph in turn, remove e and
see if there is a tour of weight at most W using
decisionTSP

if not then e must be in the tour so put it back

More examples

Independent-Set:
Given a graph G=(V,E) and an integer k, is
there a subset U of V with |U| = k such that no
two vertices in U are joined by an edge.

Clique:
Given a graph G=(V,E) and an integer k, is
there a subset U of VV with |U| = k such that
every pair of vertices in U is joined by an
edge.

Satisfiability

Boolean variables x,...,X,,
taking values in {0,1}. O=false, 1=true
Literals
x; or =x; for i=1,...,n
Clause
a logical OR of one or more literals
e.g. (X, O=x3 Ox; OXqy)
CNF formula
a logical AND of a bunch of clauses

Satisfiability

CNF formula example

(X O=Xg Ox7 OXq5) O(X, 0%, Ox7 OXs)
If there is some assignment of 0’s and 1's
to the variables that makes it true then we
say the formula is satisfiable

the one above is, the following isn't

X, O (=% Ox5) O(=x, Oxg) Oaxg
Satisfiability: Given a CNF formula F, is it
satisfiable?

Common property of these hard
problems

There is a special piece of information, a short
hint or proof, that allows you to efficiently verify
(in polynomial-time) that the YES answer is
correct. This hint might be very hard to find

e.Jg.
DecisionTSP: the tour itself,
Independent-Set, Clique: the set U

Satisfiability: an assignment that makes F
true.

The complexity class NP

NP consists of all decision problems
where one can verify the YES answers
efficiently (in polynomial time) given a
short (polynomial-size) hint.

The only obvious algorithm for most of
these problems is brute force:
try all possible hints and check each one to
see if it works.

Exponential time.

Unlike undecidability

Nobody knows if all these problems in NP
can all be done in polynomial time, i.e.
does P=NP?

one of the most important open questions in

all of science.

huge practical implications

Every problem in P is in NP

one doesn’t even need a hint for problems in

P so just ignore any hint you are given “

