CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 21
Instructor: Paul Beame

Computational Complexity

We've been interested in solving problems by using efficient algorithms.

- Algorithm run-times we've liked:

I $O(n), O(n \log n), O\left(n^{2}\right), O(n m), O\left(n^{3}\right)$, $\mathrm{O}\left(\mathrm{n}^{2.81}\right)$
| Bounded by a polynomial in \# of bits in input

Ones we haven't: $\mathrm{O}\left(2^{\mathrm{n}}\right), \mathrm{O}\left((1.618)^{\mathrm{n}}\right)$

Polynomial versus exponential

- We'll say any algorithm whose run-time is
polynomial is good
bigger than polynomial is bad
- Note:

I n^{100} is bigger than $(1.001)^{\mathrm{n}}$ for most practical values of n but usually such run-times don't show up
There are algorithms that have run-times like $\mathrm{O}\left(2^{\mathrm{n} / 22}\right)$ and these may be useful for small input sizes.

Decision problems

- Computational complexity usually analyzed using decision problems
I answer is just 1 or 0 (yes or no).

Why?
I much simpler to deal with
I can just encode each bit of a problem that has a longer answer as a decision problem
certain definitions such as NP only make sense in terms of decision problems

```
Computational Complexity
|. Classify problems according to the amount of computational resources used by the best algorithms that solve them
- Recall:
I worst-case running time of an algorithm
max \# steps algorithm takes on any input of size \(n\)
- Define:
\| \(\operatorname{TIME}(f(n))\) to be the set of all decision problems solved by algorithms having worst-case running time \(\mathrm{O}(\mathrm{f}(\mathrm{n})\) )
```


Polynomial time

- Define P (polynomial-time) to be

I the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.
$\mathrm{P}=\mathrm{U}_{k \geq 0} \mathrm{TIME}\left(\mathrm{n}^{k}\right)$

Beyond P?

There are many natural, practical problems for which we don't know any polynomial-time algorithms
e.g. decisionTSP:
\| Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k ?

Solving TSP given a solution to decisionTSP

Use binary search and several calls to decisionTSP to figure out what the exact total weight of the shortest tour is.
I Upper and lower bounds to start are n times largest and smallest weights of edges, respectively
I Call W the weight of the shortest tour.

- Now figure out which edges are in the tour

I For each edge e in the graph in turn, remove e and see if there is a tour of weight at most W using decisionTSP
if not then e must be in the tour so put it back

More examples

II Independent-Set:
| Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

- Clique:
| Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k , is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

```
Satisfiability
    Boolean variables }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{
    | taking values in {0,1}. 0=false, 1=true
| Literals
    | }\mp@subsup{x}{i}{}\mathrm{ or }\neg\mp@subsup{x}{i}{}\mathrm{ for i=1,..,n
Clause
    | a logical OR of one or more literals
    | e.g. ( }\mp@subsup{x}{1}{}\vee\neg\mp@subsup{x}{3}{}\vee\mp@subsup{x}{7}{}\vee\mp@subsup{x}{12}{}
CNF formula
    | a logical AND of a bunch of clauses
```


Common property of these hard problems

\| There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find

- e.g.
| DecisionTSP: the tour itself,
II Independent-Set, Clique: the set U
I Satisfiability: an assignment that makes F true.

The complexity class NP

II NP consists of all decision problems where one can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint.

- The only obvious algorithm for most of these problems is brute force:
I try all possible hints and check each one to see if it works.
I Exponential time.

Unlike undecidability

Nobody knows if all these problems in NP can all be done in polynomial time, i.e. does $P=N P$?
I one of the most important open questions in all of science.
I huge practical implications
I. Every problem in P is in NP

I one doesn't even need a hint for problems in P so just ignore any hint you are given

