
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 21

Instructor: Paul Beame

2

Computational Complexity

❚ We’ve been interested in solving problems
by using efficient algorithms.

❚ Algorithm run-times we’ve liked:
❙ O(n), O(n log n), O(n2), O(nm), O(n3),

O(n2.81)
❙ Bounded by a polynomial in # of bits in input

❚ Ones we haven’t: O(2n), O((1.618)n)

3

Polynomial versus exponential
❚ We’ll say any algorithm whose run-time is

❙ polynomial is good

❙ bigger than polynomial is bad

❚ Note:
❙ n100 is bigger than (1.001)n for most practical values

of n but usually such run-times don’t show up
❙ There are algorithms that have run-times like O(2n/22)

and these may be useful for small input sizes.

4

Decision problems
❚ Computational complexity usually analyzed

using decision problems
❙ answer is just 1 or 0 (yes or no).

❚ Why?
❙ much simpler to deal with
❙ can just encode each bit of a problem that has a

longer answer as a decision problem

❙ certain definitions such as NP only make sense in
terms of decision problems

5

Computational Complexity
❚ Classify problems according to the amount of

computational resources used by the best
algorithms that solve them

❚ Recall:
❙ worst-case running time of an algorithm

❘ max # steps algorithm takes on any input of size n

❚ Define:
❙ TIME(f(n)) to be the set of all decision problems

solved by algorithms having worst-case running time
O(f(n))

6

Polynomial time

❚ Define 3 (polynomial-time) to be
❙ the set of all decision problems solvable by

algorithms whose worst-case running time is
bounded by some polynomial in the input
size.

❚ 3 = Uk≥0TIME(nk)

2

7

Beyond 3?

❚ There are many natural, practical
problems for which we don’t know any
polynomial-time algorithms

❚ e.g. decisionTSP:
❙ Given a weighted graph G and an integer k,

does there exist a tour that visits all vertices
in G having total weight at most k?

8

Solving TSP given a solution to
decisionTSP
❚ Use binary search and several calls to

decisionTSP to figure out what the exact total
weight of the shortest tour is.
❙ Upper and lower bounds to start are n times largest

and smallest weights of edges, respectively
❙ Call W the weight of the shortest tour.

❚ Now figure out which edges are in the tour
❙ For each edge e in the graph in turn, remove e and

see if there is a tour of weight at most W using
decisionTSP

❘ if not then e must be in the tour so put it back

9

More examples

❚ Independent-Set:
❙ Given a graph G=(V,E) and an integer k, is

there a subset U of V with |U| ≥ k such that no
two vertices in U are joined by an edge.

❚ Clique:
❙ Given a graph G=(V,E) and an integer k, is

there a subset U of V with |U| ≥ k such that
every pair of vertices in U is joined by an
edge.

10

Satisfiability

❚ Boolean variables x1,...,xn

❙ taking values in {0,1}. 0=false, 1=true

❚ Literals
❙ xi or ¬xi for i=1,...,n

❚ Clause
❙ a logical OR of one or more literals

❙ e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

❚ CNF formula
❙ a logical AND of a bunch of clauses

11

Satisfiability

❚ CNF formula example
❙ (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ (x2 ∨ ¬x4 ∨ x7 ∨ x5)

❚ If there is some assignment of 0’s and 1’s
to the variables that makes it true then we
say the formula is satisfiable
❙ the one above is, the following isn’t
❙ x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

❚ Satisfiability: Given a CNF formula F, is it
satisfiable?

12

Common property of these hard
problems
❚ There is a special piece of information, a short

hint or proof, that allows you to efficiently verify
(in polynomial-time) that the YES answer is
correct. This hint might be very hard to find

❚ e.g.
❙ DecisionTSP: the tour itself,
❙ Independent-Set, Clique: the set U
❙ Satisfiability: an assignment that makes F

true.

3

13

The complexity class 13

❚ 13 consists of all decision problems
where one can verify the YES answers
efficiently (in polynomial time) given a
short (polynomial-size) hint.

❚ The only obvious algorithm for most of
these problems is brute force:
❙ try all possible hints and check each one to

see if it works.
❙ Exponential time.

14

Unlike undecidability

❚ Nobody knows if all these problems in NP
can all be done in polynomial time, i.e.
does P=NP?
❙ one of the most important open questions in

all of science.
❙ huge practical implications

❚ Every problem in P is in NP
❙ one doesn’t even need a hint for problems in

P so just ignore any hint you are given

