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TA: Gidon Shavit
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Complexity analysis

❚ Problem size n
❙ Worst-case complexity: max # steps

algorithm takes on any input of size n
❙ Best-case complexity: min # steps

algorithm takes on any input of size n
❙ Average-case complexity: avg # steps

algorithm takes on inputs of size n
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Complexity

❚ The complexity of an algorithm associates a
number T(n), the best/worst/average-case time
the algorithm takes, with each problem size n.

❚ Mathematically,
❙ T: N+ → R+

❙ that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.
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O-notation etc

❚ Given two functions f and g:N→R
❙ f(n) is O(g(n))  iff there is a constant c>0 so

                    that  c g(n) is eventually
                              always ≥ f(n)

❙ f(n) is Ω(g(n))  iff there is a constant c>0 so
                    that c g(n) is eventually

                              always ≤ f(n)
❙ f(n) is Θ(g(n))  iff there is are constants c1

              and c2>0 so that eventually
    always c1g(n) ≤ f(n) ≤ c2g(n)
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Examples

❚ 10n2-16n+100 is O(n2)  also O(n3)
❙ 10n2-16n+100 ≤ 11n2 for all n ≥ 10

❚ 10n2-16n+100 is Ω(n2)  also Ω(n)
❙ 10n2-16n+100 ≥ 9n2 for all n ≥16
❙ Therefore also 10n2-16n+100 is Θ(n2)

❚ 10n2-16n+100 is not O(n)   also not Ω(n3)

❚ Note: I don’t use notation f(n)=O(g(n))
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Domination

❚ f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0
❙ that is g(n) dominates f(n)

❚ If α ≤ β�then nα is O(nβ)
❚ If α < β�then nα is o(nβ)

❚ Note: if f(n) is Θ(g(n)) then it cannot be
o(g(n))
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General algorithm design
paradigm

❚ Find a way to reduce your problem to one
or more smaller problems of the same
type

❚ When problems are really small solve
them directly
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Example

❚ Mergesort
❙ on a problem of size at least 2

❘ Sort the first half of the numbers

❘ Sort the second half of the numbers

❘ Merge the two sorted lists

❙ on a problem of size 1 do nothing
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Cost of Merge

❚ Given two lists to merge size n and m
❙ Maintain pointer to head of each list
❙ Move smaller element to output and advance

pointer
n

m

n+m

Worst case n+m-1 comparisons
Best case   min(n,m) comparisons 12

Recurrence relation for
Mergesort

❚ In total including other operations let’s say each
merge costs 3 per element output

❚ T(n)=T(n/2)+T(n/2)+3n   for n≥2
❚ T(1)=1
❚ Can use this to figure out T for any value of n

❙ T(5)=T(3)+T(2)+3x5                                         
    =(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15         
    =((T(1)+T(1)+6)+1+9)+(1+1+6)+15              
    =8+10+8+15=41

“ceiling” round up

“floor” round down
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Insertion Sort

❚ For i=2 to n do
j←i
while(j>1 & X[ j ] > X[ j-1])  do
        swap X[ j ] and X[ j-1]

❚ i.e.,  For i=2 to n do
       Insert X[i] in the sorted list 

        X[1],...,X[i-1]
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May need to add extra
conditions - Insertion Sort

❚ Original problem
❙ Input: x1,...,xn with same values as a1,...,an

❙ Desired output: x1≤x2 ≤... ≤xn containing
same values as a1,...,an

❚ Partial progress
❙ x1≤x2 ≤... ≤xi,xi+1,...,xn containing same values

as a1,...,an
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Recurrence relation for Insertion
Sort

❚ Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
❙ We want T(n,n)

❚ The insertion of X[i] makes up to i-1
comparisons in the worst case

❚ T(n,i)=T(n,i-1)+i-1   for i>1
❚ T(n,1)=0   since a list of length 1 is always

sorted
❚ Therefore T(n,n)=n(n-1)/2   (next class)


