CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 2
Instructor: Paul Beame
TA: Gidon Shavit

Complexity analysis

Problem size n
|| Worst-case complexity: max \# steps algorithm takes on any input of size n
| Best-case complexity: min \# steps algorithm takes on any input of size n
| Average-case complexity: avg \# steps algorithm takes on inputs of size n

Complexity

- The complexity of an algorithm associates a number T(n), the best/worst/average-case time the algorithm takes, with each problem size n.
. Mathematically,
$\| \mathrm{T}: \mathrm{N}^{+} \rightarrow \mathrm{R}^{+}$
\| that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Complexity

O-notation etc

Given two functions f and $g: N \rightarrow R$
$\| \mathbf{f}(\mathbf{n})$ is $O(\mathbf{g}(\mathbf{n}))$ iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \boldsymbol{g}(\mathbf{n})$ is eventually always $\geq \mathbf{f}(\mathbf{n})$
$\mathbf{f}(\mathbf{n})$ is $\Omega(\mathbf{g}(\mathbf{n})$) iff there is a constant $\mathbf{c}>0$ so that $\mathbf{c} \mathbf{g}(\mathbf{n})$ is eventually always $\leq \mathbf{f}(\mathbf{n})$
$\mathbf{f}(\mathbf{n})$ is $\Theta\left(\mathbf{g}(\mathbf{n})\right.$) iff there is are constants \mathbf{c}_{1} and $\mathrm{c}_{2}>0$ so that eventually always $\mathbf{c}_{1} \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathbf{n}) \leq \mathbf{c}_{\mathbf{2}} \mathbf{g}(\mathbf{n})$

Examples

$\mathbf{1 0} \mathbf{n}^{\mathbf{2}} \mathbf{- 1 6 n + 1 0 0}$ is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right) \quad$ also $\mathrm{O}\left(\mathrm{n}^{3}\right)$
l $10 n^{2}-16 n+100 \leq 11 n^{2}$ for all $n \geq 10$
$\mathbf{1 0} \mathbf{n}^{\mathbf{2}-16 \mathbf{n}+100}$ is $\Omega\left(\mathbf{n}^{\mathbf{2}}\right) \quad$ also $\Omega(\mathrm{n})$
| $10 n^{2}-16 n+100 \geq 9 n^{2}$ for all $n \geq 16$
I Therefore also $\mathbf{1 0} \mathbf{n}^{2} \mathbf{- 1 6 n + 1 0 0}$ is $\Theta\left(\mathbf{n}^{\mathbf{2}}\right)$
$\mathbf{1 0} \mathbf{n}^{\mathbf{2}} \mathbf{- 1 6 n + 1 0 0}$ is not $\mathbf{O}(\mathbf{n})$ also not $\Omega\left(n^{3}\right)$
Note: I don't use notation $\mathbf{f}(\mathbf{n})=\mathbf{O}(\mathbf{g}(\mathbf{n}))$

Domination

$\mathbf{f}(\mathbf{n})$ is $\circ\left(\mathbf{g}(\mathbf{n})\right.$) iff $\lim _{\mathrm{n} \rightarrow \infty} \mathbf{f (n) / g (n) = \mathbf { 0 }}$
$\|$ that is $\mathbf{g}(\mathbf{n})$ dominates $\mathbf{f}(\mathbf{n})$
II If $\alpha \leq \beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$
-If $\alpha<\beta$ then \mathbf{n}^{α} is $\mathbf{O}\left(\mathbf{n}^{\beta}\right)$

Note: if $\mathbf{f}(\mathbf{n})$ is $\Theta(\mathbf{g}(\mathbf{n}))$ then it cannot be O(g(n))

General algorithm design paradigm

- Find a way to reduce your problem to one or more smaller problems of the same type

When problems are really small solve them directly

Example

Mergesort
\| on a problem of size at least 2
Sort the first half of the numbers
Sort the second half of the numbers
Merge the two sorted lists
II on a problem of size 1 do nothing

Cost of Merge

Given two lists to merge size n and m

Recurrence relation for

 MergesortI Maintain pointer to head of each list
\| Move smaller element to output and advance pointer
[माप्य
प पП ${ }^{\mathrm{m}}$

II In total including other operations let's say each merge costs 3 per element output
|. $T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+3 n$ for $n \geq 2$

- $\mathrm{T}(1)=1$
- Can use this to figure out T for any value of n
\| $\mathrm{T}(5)=\mathrm{T}(3)+\mathrm{T}(2)+3 \times 5$
$=(\mathrm{T}(2)+\mathrm{T}(1)+3 \times 3)+(\mathrm{T}(1)+\mathrm{T}(1)+3 \times 2)+15$
$=((T(1)+T(1)+6)+1+9)+(1+1+6)+15$
$=8+10+8+15=41$

Insertion Sort

- For $\mathrm{i}=2$ to n do $j \leftarrow i$
while $(j>1 \& X[j]>X[j-1])$ do swap $X[j]$ and $X[j-1]$

II i.e., For $\mathrm{i}=2$ to n do Insert $\mathrm{X}[i]$ in the sorted list $\mathrm{X}[1], \ldots, \mathrm{X}[\mathrm{i}-1]$

May need to add extra conditions - Insertion Sort

| Original problem
II Input: x_{1}, \ldots, x_{n} with same values as a_{1}, \ldots, a_{n}
|| Desired output: $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ containing
same values as a_{1}, \ldots, a_{n}
Partial progress
\| $x_{1} \leq x_{2} \leq \ldots \leq x_{i}, x_{i+1}, \ldots, x_{n}$ containing same values as $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$

Recurrence relation for Insertion Sort

- Let $\mathbf{T}(\mathbf{n}, \mathbf{i})$ be the worst case cost of creating list that has first \mathbf{i} elements sorted out of \mathbf{n}.
1 We want $\mathbf{T}(\mathbf{n}, \mathbf{n})$
- The insertion of $\mathbf{X}[\mathbf{i}]$ makes up to $\mathbf{i - 1}$ comparisons in the worst case || $\mathrm{T}(\mathrm{n}, \mathrm{i})=\mathrm{T}(\mathrm{n}, \mathrm{i}-1)+\mathrm{i}-1 \quad$ for $\mathrm{i}>1$
- $\mathbf{T}(\mathbf{n}, \mathbf{1})=\mathbf{0}$ since a list of length 1 is always sorted
|. Therefore $\mathbf{T}(\mathbf{n}, \mathrm{n})=\mathbf{n}(\mathbf{n - 1}) / \mathbf{2}$ (next class)
Ther $\quad 15$

