
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 2

Instructor: Paul Beame
TA: Gidon Shavit

2

Complexity analysis

❚ Problem size n
❙ Worst-case complexity: max # steps

algorithm takes on any input of size n
❙ Best-case complexity: min # steps

algorithm takes on any input of size n
❙ Average-case complexity: avg # steps

algorithm takes on inputs of size n

3

Complexity

❚ The complexity of an algorithm associates a
number T(n), the best/worst/average-case time
the algorithm takes, with each problem size n.

❚ Mathematically,
❙ T: N+ → R+

❙ that is T is a function that maps positive
integers giving problem size to positive real
numbers giving number of steps.

4

Complexity

Problem size

T
im

e

T(n)

5

Complexity

Problem size

T
im

e

T(n)

n log2n

2n log2n

6

O-notation etc

❚ Given two functions f and g:N→R
❙ f(n) is O(g(n)) iff there is a constant c>0 so

 that c g(n) is eventually
 always ≥ f(n)

❙ f(n) is Ω(g(n)) iff there is a constant c>0 so
 that c g(n) is eventually

 always ≤ f(n)
❙ f(n) is Θ(g(n)) iff there is are constants c1

 and c2>0 so that eventually
 always c1g(n) ≤ f(n) ≤ c2g(n)

2

7

Examples

❚ 10n2-16n+100 is O(n2) also O(n3)
❙ 10n2-16n+100 ≤ 11n2 for all n ≥ 10

❚ 10n2-16n+100 is Ω(n2) also Ω(n)
❙ 10n2-16n+100 ≥ 9n2 for all n ≥16
❙ Therefore also 10n2-16n+100 is Θ(n2)

❚ 10n2-16n+100 is not O(n) also not Ω(n3)

❚ Note: I don’t use notation f(n)=O(g(n))
8

Domination

❚ f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0
❙ that is g(n) dominates f(n)

❚ If α ≤ β�then nα is O(nβ)
❚ If α < β�then nα is o(nβ)

❚ Note: if f(n) is Θ(g(n)) then it cannot be
o(g(n))

9

General algorithm design
paradigm

❚ Find a way to reduce your problem to one
or more smaller problems of the same
type

❚ When problems are really small solve
them directly

10

Example

❚ Mergesort
❙ on a problem of size at least 2

❘ Sort the first half of the numbers

❘ Sort the second half of the numbers

❘ Merge the two sorted lists

❙ on a problem of size 1 do nothing

11

Cost of Merge

❚ Given two lists to merge size n and m
❙ Maintain pointer to head of each list
❙ Move smaller element to output and advance

pointer
n

m

n+m

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 12

Recurrence relation for
Mergesort

❚ In total including other operations let’s say each
merge costs 3 per element output

❚ T(n)=T(n/2)+T(n/2)+3n for n≥2
❚ T(1)=1
❚ Can use this to figure out T for any value of n

❙ T(5)=T(3)+T(2)+3x5
 =(T(2)+T(1)+3x3)+(T(1)+T(1)+3x2)+15
 =((T(1)+T(1)+6)+1+9)+(1+1+6)+15
 =8+10+8+15=41

“ceiling” round up

“floor” round down

3

13

Insertion Sort

❚ For i=2 to n do
j←i
while(j>1 & X[j] > X[j-1]) do
 swap X[j] and X[j-1]

❚ i.e., For i=2 to n do
 Insert X[i] in the sorted list

 X[1],...,X[i-1]

14

May need to add extra
conditions - Insertion Sort

❚ Original problem
❙ Input: x1,...,xn with same values as a1,...,an

❙ Desired output: x1≤x2 ≤... ≤xn containing
same values as a1,...,an

❚ Partial progress
❙ x1≤x2 ≤... ≤xi,xi+1,...,xn containing same values

as a1,...,an

15

Recurrence relation for Insertion
Sort

❚ Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
❙ We want T(n,n)

❚ The insertion of X[i] makes up to i-1
comparisons in the worst case

❚ T(n,i)=T(n,i-1)+i-1 for i>1
❚ T(n,1)=0 since a list of length 1 is always

sorted
❚ Therefore T(n,n)=n(n-1)/2 (next class)

