CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 2
Instructor: Paul Beame
TA: Gidon Shavit

Complexity analysis

Problem size n
Worst-case complexity: max # steps
algorithm takes on any input of size n
Best-case complexity: min # steps
algorithm takes on any input of size n
Average-case complexity: avg # steps
algorithm takes on inputs of size n

Complexity

The complexity of an algorithm associates a
number T(n), the best/worst/average-case time
the algorithm takes, with each problem size n.

Mathematically,
T:N* ~ R*
that is T is a function that maps positive

integers giving problem size to positive real
numbers giving number of steps.

Complexity

Time

Problem size

T(n)

Complexity

2n log,n

Time

Problem size

O-notation etc

Given two functions f and g:N - R

f(n) is O(g(n)) iff there is a constant c>0 so
that c¢ g(n) is eventually
always = f(n)
f(n) is Q(g(n)) iff there is a constant c>0 so
that ¢ g(n) is eventually
always < f(n)
f(n) is ©(g(n)) iff there is are constants c;
and c,>0 so that eventually
always c;g(n) < f(n) < c,g(n)

6

Examples

10n2-16n+100 is O(n?)
10n2-16n+100 < 11n? for all n = 10

10n2-16n+100 is Q(n?)
10n2-16n+100 = 9n? for all n 216
Therefore also 10n2-16n+100 is ©(n?)

10n2-16n+100 is not O(n)

Note: | don’t use notation f(n)=0(g(n))

Domination

f(n) is o(g(n)) iff lim_, f(n)/g(n)=0
that is g(n) dominates f(n)

If a < B then n®is O(nP)

If a < B then n®is o(nf)

Note: if f(n) is ©(g(n)) then it cannot be
o(g(n))

General algorithm design
paradigm

Find a way to reduce your problem to one
or more smaller problems of the same

type

When problems are really small solve
them directly

Example

Mergesort
on a problem of size at least 2
Sort the first half of the numbers
Sort the second half of the numbers
Merge the two sorted lists
on a problem of size 1 do nothing

Cost of Merge

Given two lists to merge size n and m
Maintain pointer to head of each list

Move smaller element to output and advance
pointer

[IITT] ™

Worst case n+m-1 comparisons
Best case min(n,m) comparisons 1

n+m

Recurrence relation for
Mergesort

In total including other operations let's say each
merge costs 3 per element output
ceiling” round up

T(n)=T(h/2D+T(h/20+3n for n=2

T(l):l floor” round down

Can use this to figure out T for any value of n

T(5)=T(3)+T(2)+3x5

=(T(2)+T(1)+3x3)+(T(L)+T(1)+3x2)+15
=((T(1)+T(1)+6)+1+9)+(1+1+6)+15
=8+10+8+15=41

Insertion Sort

For i=2 to n do
jei
while(j>1 & X[j]> X[j-1]) do
swap X[j]and X[j-1]

i.e., Fori=2tondo
Insert X[i] in the sorted list
X[1],...,X[i-1]

May need to add extra
conditions - Insertion Sort

Original problem
Input: Xy,...,X, with same values as a;,...,a,

Desired output: x;<x, <... €x, containing
same values as aj,...,a,

Partial progress
X1SX5 S..o X, X415, X, CONtAiNing same values
as ay,...,a,

Recurrence relation for Insertion
Sort

Let T(n,i) be the worst case cost of creating list
that has first i elements sorted out of n.
We want T(n,n)

The insertion of X[i] makes up to i-1
comparisons in the worst case

T(n,i)=T(n,i-1)+i-1 fori>1

T(n,1)=0 since a list of length 1 is always
sorted

Therefore T(n,n)=n(n-1)/2 (next class) 5

