
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 19

Instructor: Paul Beame
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Halting Problem

❚ Given: the code of a program P and an
input x for P, i.e. given <P,x>

❚ Output: 1 if P halts on input x and 0 if P
does not halt on input x

❚ Theorem (Turing):  There is no program
that solves the halting problem

“The halting problem is undecidable”
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Undecidability of the Halting
Problem

❚ Suppose that there is a program H that
computes the answer to the Halting
Problem

❚ We’ll build a table with all the possible
programs down one side and all the
possible inputs along the other and do a
diagonal flip to produce a contradiction
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0   1  1  0    1     1    1     0      0      0      1  ....
1   1  0  1    0     1    1     0      1      1      1  ....
1   0  1  0    0     0    0     0      0      0      1  ....
0   1  1  0    1     0    1     1      0      1      0  ....
0   1  1  1    1     1    1     0      0      0      1  ....
1   1  0  0    0     1    1     0      1      1      1  ....
1   0  1  1    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  

Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever
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1   1  1  0    1     1    1     0      0      0      1  ....
1   0  0  1    0     1    1     0      1      1      1  ....
1   0  0  0    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
0   1  1  1    0     1    1     0      0      0      1  ....
1   1  0  0    0     0    1     0      1      1      1  ....
1   0  1  1    0     0    1     0      0      0      1  ....
0   1  1  1    1     0    1     0      0      1      0  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  

Want to create a new program whose halting
properties are given by the flipped diagonal
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Diagonal construction

❚ Suppose H exists
❚ Now define a new program D such that

❙ D on input x:
❘ runs H checking if the program P whose code is x

halts when given x as input; i.e. does P halt on
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.

❚ The row for the program D would be like
the flip of the diagonal
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Code for D assuming
subroutine for H

❚ Function D(x):
❙ if H(x,x)=1 then

❘ while (true); /* loop forever */

❙ else
❘ no-op; /* do nothing and halt */

❙ endif
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Finishing the argument

❚ D must be different from any program in
the list:

❚ Suppose it has code <D> then
❙ D halts on input <D>
❙ iff (by definition of D)
❙ H outputs 0 given program D and input <D>
❙ iff (by definition of H)
❙ D runs forever on input <D>

❚ Contradiction!
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Relating hardness of problems

❚ We have one problem that we know is
impossible to solve
❙ Halting problem

❚ Showing this took serious effort
❚ We’d like to use this fact to derive that

other problems are impossible to solve
❙ don’t want to go back to square one to do it
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Reductions
❚ Given two problems to solve, L and R.

❙ (think Left and Right)

❚ Suppose you had a translation program T so
that the following would correctly solve L (if you
happened to have code for R handy)

❙ Function L(x)
❘ Run program T to translate input x for L into an

input  y for R

❘ Call a subroutine for problem R on input y

❘ Output the answer produced by R(y)
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Property that makes this correct

❚ It better be the case that no matter what x
is

     L(x)=R(y)                                    
i.e.     L(x)=R(T(x))

❚ T is called a reduction from problem L to
problem R

❚ If such a T exists we write L ≤ R.
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Reduction L ≤ R
inputs for L inputs for R

T

x y

L(x)=R(T(x))

Intuition:  L is at least as easy as R or, equivalently,
R is at least as hard as L
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Example: BFS ≤  Shortest-Path

❚ BFS:  Given a graph G and a vertex v, output
the BFS tree of G started at v

❚ Shortest-Paths: Given a graph G with non-
negative weights on its edges, and a vertex v
output the shortest-path tree of G from v

❚ Reduction T:  Given G and v, create weights for
all edges in G giving each edge weight 1

❚ <G,v>  → <G,weights,v>
 T
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Properties of reductions

❚ Given that I have any reduction T such
that L(x)=R(T(x))
❙ If I had a program that solves R then I would

have a program that solves L

❚ Therefore
❙ If there is no program that solves L then there

cannot be any program that solves R!
❙ (statement is just equivalent to one above)
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Another  undecidable problem

❚ 1’s problem:  Given the code of a program
M does M output 1 on input 1? If so,
answer 1 else answer 0.

❚ Claim: the 1’s problem is undecidable

❚ Proof: by reduction from the Halting 
      Problem
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What we want for the reduction

❚ Halting problem takes as input a pair
<P,x>

❚ 1’s problem takes as input <M>

❚ Given <P,x> can we create an <M> so
that M outputs 1 on input 1 exactly when P
halts on input x?
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Yes

❚ Here is all that we need to do to create M
❙ modify the code of P so that instead of

reading x, x is hard-coded as the input to P
and get rid of all output statements in P

❙ add a new statement at the end of P that
outputs 1.

❚ We can write another program T that can
do this transformation from <P,x> to <M>
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Finishing things off

❚ Therefore  we get a reduction
❙ Halting Problem ≤ 1’s problem

❚ Since there is no program solving the
Halting Problem there must be no
program solving the 1’s problem.
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Why the name reduction?

❚ Weird: it maps an easier problem into a
harder one

❚ Same sense as saying Maxwell reduced
the problem of analyzing electricity &
magnetism to solving partial differential
equations
❙ solving partial differential equations in general

is a much harder problem than solving E&M
problems

20

A geek joke
❚ An engineer

❙ is placed in a kitchen with an empty kettle on the table and told
to boil water; she fills the kettle with water, puts it on the stove,
turns on the gas and boils water.

❙ she is next confronted with a kettle full of water sitting on the
counter and told to boil water; she puts it on the stove, turns on
the gas and boils water.

❚ A mathematician
❙ is placed in a kitchen with an empty kettle on the table and told

to boil water; he fills the kettle with water, puts it on the stove,
turns on the gas and boils water.

❙ he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink,
places the empty kettle on the table and says, “I’ve reduced this
to an already solved problem”.


