CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 19
Instructor: Paul Beame

Halting Problem

Given: the code of a program P and an input x for P, i.e. given $<P, x>$
Output: 1 if P halts on input x and 0 if P does not halt on input x

Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Undecidability of the Halting Problem

Suppose that there is a program H that computes the answer to the Halting Problem

We'll build a table with all the possible programs down one side and all the possible inputs along the other and do a diagonal flip to produce a contradiction

Entries are 1 if program P given by the code halts on input x and 0 if it runs forever

Diagonal construction

- Suppose H exists
- Now define a new program D such that \| D on input x :
runs H checking if the program P whose code is x halts when given x as input; i.e. does P halt on input <P>
if H outputs 1 then D goes into an infinite loop if H outputs 0 then D halts.

The row for the program D would be like the flip of the diagonal

Code for D assuming subroutine for H

Function $D(x)$:
I if $H(x, x)=1$ then
while (true); /* loop forever */
${ }^{1}$ else
no-op; /* do nothing and halt */
l endif

Finishing the argument

II D must be different from any program in the list:

- Suppose it has code <D> then

I D halts on input <D>
I iff (by definition of D)
| H outputs 0 given program D and input <D>
I iff (by definition of H)
| D runs forever on input <D>
Contradiction!

Reductions

- Given two problems to solve, L and R.

I (think Left and Right)

- Suppose you had a translation program T so that the following would correctly solve L (if you happened to have code for R handy)
| Function $\mathrm{L}(\mathrm{x})$
Run program T to translate input x for L into an input y for R
Call a subroutine for problem R on input y
Output the answer produced by $R(y)$

Reduction $L \leq R$

$$
\mathrm{L}(\mathrm{x})=\mathrm{R}(\mathrm{~T}(\mathrm{x}))
$$

Intuition: L is at least as easy as R or, equivalently, R is at least as hard as L

Example: BFS \leq Shortest-Path

| BFS: Given a graph G and a vertex v, output the BFS tree of G started at v

- Shortest-Paths: Given a graph G with nonnegative weights on its edges, and a vertex v output the shortest-path tree of G from v
- Reduction T: Given G and v, create weights for all edges in G giving each edge weight 1

$$
<\mathrm{G}, \mathrm{v}>\underset{\mathrm{T}}{\rightarrow}<\mathrm{G}, \text { weights, v> }
$$

Properties of reductions

- Given that I have any reduction T such that $\mathrm{L}(\mathrm{x})=\mathrm{R}(\mathrm{T}(\mathrm{x}))$
| If I had a program that solves R then I would have a program that solves L
- Therefore

II If there is no program that solves L then there cannot be any program that solves R !
I (statement is just equivalent to one above)

Another undecidable problem

1's problem: Given the code of a program M does M output 1 on input 1 ? If so, answer 1 else answer 0.

Claim: the 1's problem is undecidable

Proof: by reduction from the Halting Problem

What we want for the reduction

Halting problem takes as input a pair <P,x>

- 1's problem takes as input <M>
- Given $<\mathrm{P}, \mathrm{x}>$ can we create an $<\mathrm{M}>$ so that M outputs 1 on input 1 exactly when P halts on input x ?

Yes

I. Here is all that we need to do to create M

I modify the code of P so that instead of reading x, x is hard-coded as the input to P and get rid of all output statements in P
1 add a new statement at the end of P that outputs 1.

Finishing things off

- Therefore we get a reduction
| Halting Problem ≤ 1 's problem

Since there is no program solving the Halting Problem there must be no program solving the 1's problem.
|| We can write another program T that can do this transformation from $<\mathrm{P}, \mathrm{x}>$ to $<\mathrm{M}>$

Why the name reduction?

Weird: it maps an easier problem into a harder one

- Same sense as saying Maxwell reduced the problem of analyzing electricity \& magnetism to solving partial differential equations
| solving partial differential equations in general is a much harder problem than solving E\&M problems

A geek joke

- An engineer

I is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
I she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.

- A mathematician

I is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
I he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, "I've reduced this to an already solved problem".

