CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 19
Instructor: Paul Beame

Halting Problem

Given: the code of a program P and an
input x for P, i.e. given <P, x>

Output: 1 if P halts on input x and 0 if P
does not halt on input x

Theorem (Turing): There is no program
that solves the halting problem
“The halting problem is undecidable”

Undecidability of the Halting
Problem

Suppose that there is a program H that
computes the answer to the Halting
Problem

We'll build a table with all the possible
programs down one side and all the
possible inputs along the other and do a
diagonal flip to produce a contradiction

input
¢ 010001 10 11 000 001 010 0O11....
€ 1101 1.1 0 O O 1 ..
0|1 01 0 1 1 O 1 1 1
1fr0:0 0 OO O O O 1
520001101 01 1 0 1 O
8010 111 110 0 0 1
£10(1 100 0 10 1 1 1
©11|11 011 0 O 0 0 O 1
20000 111 1 0 1 0 1 0
2001
Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever

input
€ 010001 10 11 000 001 010 0O11....
€/2110 1 1.1 0 0 O 1 ..
0|1 001 0 1 1 O 1 1 1
1frp 000 0 O O O O O 1
»00/011212 1 01 1 O 1 0
§ 010 111 0 1 1 0 0 0 1
c 101 100 0O O 1 O 1 1 1
©11|112 011 0 0 1 0 O O 1
goo00 111 1 01 0 0 1 O
5001
Want to create a new program whose halting
properties are given by the flipped diagonal

Diagonal construction

Suppose H exists

Now define a new program D such that

D on input x:

runs H checking if the program P whose code is x
halts when given x as input; i.e. does P halt on
input <P>

if H outputs 1 then D goes into an infinite loop
if H outputs 0 then D halts.
The row for the program D would be like
the flip of the diagonal

Code for D assuming
subroutine for H

Function D(x):
if H(x,x)=1 then
while (true); /* loop forever */
else
no-op; /* do nothing and halt */
endif

Finishing the argument

D must be different from any program in
the list:

Suppose it has code <D> then
D halts on input <D>
iff (by definition of D)
H outputs 0 given program D and input <D>
iff (by definition of H)
D runs forever on input <D>
Contradiction! 5

Relating hardness of problems

We have one problem that we know is
impossible to solve
Halting problem
Showing this took serious effort
We'd like to use this fact to derive that
other problems are impossible to solve
don’t want to go back to square one to do it

Reductions

Given two problems to solve, L and R.

(think Left and Right)
Suppose you had a translation program T so
that the following would correctly solve L (if you
happened to have code for R handy)

Function L(x)
Run program T to translate input x for L into an
input y for R
Call a subroutine for problem R on input y
Output the answer produced by R(y)

10

Property that makes this correct

It better be the case that no matter what x
is

L(X)=R(y)
i.e. LX)=R(T(x))

T is called a reduction from problem L to
problem R

If such a T exists we write L < R.

ReductionL<R

inputs for L inputs for R

L)=R(T(x)

Intuition: L is at least as easy as R or, equivalently,
Ris at least as hard as L

Example: BFS < Shortest-Path

BFS: Given a graph G and a vertex v, output
the BFS tree of G started at v
Shortest-Paths: Given a graph G with non-
negative weights on its edges, and a vertex v
output the shortest-path tree of G from v

Reduction T: Given G and v, create weights for
all edges in G giving each edge weight 1

<G,v> - <G,weights,v>
T

Properties of reductions

Given that | have any reduction T such
that L(xX)=R(T(x))
If I had a program that solves R then | would
have a program that solves L

Therefore
If there is no program that solves L then there
cannot be any program that solves R!
(statement is just equivalent to one above)

Another undecidable problem

1's problem: Given the code of a program
M does M output 1 on input 1? If so,
answer 1 else answer 0.

Claim: the 1's problem is undecidable

Proof: by reduction from the Halting
Problem

What we want for the reduction

Halting problem takes as input a pair
<P, x>
1's problem takes as input <M>

Given <P,x> can we create an <M> so
that M outputs 1 on input 1 exactly when P
halts on input x?

Yes

Here is all that we need to do to create M

modify the code of P so that instead of
reading X, x is hard-coded as the input to P
and get rid of all output statements in P
add a new statement at the end of P that
outputs 1.

We can write another program T that can
do this transformation from <P,x> to <M>

Finishing things off

Therefore we get a reduction
Halting Problem < 1's problem

Since there is no program solving the
Halting Problem there must be no
program solving the 1's problem.

Why the name reduction?

Weird: it maps an easier problem into a
harder one

Same sense as saying Maxwell reduced
the problem of analyzing electricity &
magnetism to solving partial differential
equations
solving partial differential equations in general
is a much harder problem than solving E&M
problems

A geek joke
An engineer
is placed in a kitchen with an empty kettle on the table and told
to boil water; she fills the kettle with water, puts it on the stove,
turns on the gas and boils water.
she is next confronted with a kettle full of water sitting on the

counter and told to boil water; she puts it on the stove, turns on
the gas and boils water.

A mathematician

is placed in a kitchen with an empty kettle on the table and told
to boil water; he fills the kettle with water, puts it on the stove,
turns on the gas and boils water.

he is next confronted with a kettle full of water sitting on the
counter and told to boil water: he empties the kettle in the sink,
places the empty kettle on the table and says, “I've reduced this

to an already solved problem”.
20

