CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 18 Instructor: Paul Beame

Turing Machines

- Church-Turing Thesis
 - Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

Huge numbers of equivalent models to TM's based on radically different ideas

Universal Turing Machine

- A Turing machine interpreter U
 - I On input the code of a program (or Turing machine) P and an input x, U outputs the same thing as P does on input x
 - Basis for modern stored-program computer

Notation:

We'll write <P> for the code of program P and <P,x> for the pair of the program code and input

Halting Problem

- Given: the code of a program P and an input x for P, i.e. given <P,x>
- Output: 1 if P halts on input x and 0 if P does not halt on input x
- Theorem (Turing): There is no program that solves the halting problem "The halting problem is undecidable"

Proof ideas: Countability (Cantor 1875)

- Defn: A set S is countable iff there is a function mapping the natural numbers N onto S.
 - I i.e. we can write $S = \{s_1, s_2, s_3, ...\}$, i.e. $f(i) = s_i$
- All finite sets are countable.
- The natural numbers are countable
- The integers are countable
 - Z={0,1,-1,2,-2,3,-3,4,-4,5,-5,...}

1234567891011...

Uncountability

- The set of all functions f from the natural numbers N to {0,1} is not countable.
- Suppose it were and we had a list of all such functions {f₁, f₂, f₃,...}
- We build an infinite table of these functions

		ι.	_	_			pu		_	_					
_		1	2	3	4	5	6	7	8	9	10	11	12		
	f ₁	0	1	1	0		1	1	0	0	0	1	1		
	f_2	1	1	0	1	0	1	1	0	1	1	1	0		
	f_3	1	0	1	0	0	0	0	0	0	0	1	1		
	f_4	0	1	1	0	1	0	1	1	0	1	0	1		
_	f_5	0	1	0	0	1	1	1	0	0	0	1	1		
function	f_6	1	1	0	1	1	1	1	0	1	1	1	0		
^o	f_7	1	0	1	0	0	1	0	0	0	0	1	1		
5	f ₈	0	1	1	0	0	0	1	1	0	1	0	1		
				•								•			
		•													
	·	•		•			•		•	•		•			
															8

						in	pu	t							
		1	2	3	4	5	6	7	8	9	10	11	12		
	f ₁	0	1	1	0	1	1	1	0	0	0	1	1		
	f ₂	1	1	0	1	0	1	1	0	1	1	1	0		
	f ₃	1	0	1	0	0	0	0	0	0	0	1	1		
		0	1	1	0	1	0	1	1	0	1	0	1		
c	5	0	1	0	0	1	1	1	0	0	0	1	1		
÷	f_6	1	1	0	1	1	1	1	0	1	1	1	0		
function	f ₇	1	0	1	0	0	1	0	0	0	0	1	1		
Ę	f ₈	0	1	1	0	0	0	1	1	0	1	0	1		
	•	·		•	• •	•		•	•	•	•	•	•		
	·	·		•	• •	·		•	•	• •	• •	·	•		
	·	•		•	•••	·		•	•	• •	• •		•		
															9

						in	pu	t									
		1	2	3	4	5	6	7	8	9	10	11	12 .				
'	f ₁	1	1	1	0	1	1	1	0	0	0	1	1.				
	f_2	1	0	0	1	0	1	1	0	1	1	1	0.				
	f_3	1	0	0	0	0	0	0	0	0	0	1	1.				
	f_4	0	1	1	1	1	0	1	1	0	1	0	1.				
L _	f_5	0	1	0	0	0	1	1	0	0	0	1	1.				
function	f_6	1	1	0	1	1	0	1	0	1	1	1	0.	• • •			
Ιŭ	f ₇	1	0	1	0	0	1	1	0	0	0	1	1.	• • •			
₽	f ₈	0	1	1	0	0	0	1	0	0	1	0	1.				
	·	•			• •	•			•	•	• •	•	•				
	·	•		• •	• •	•		•	•	•	• •	·	•				
	·	•		•	• •	•		•	•	•	• •	. •	•				
																10	

Diagonalization

- Define function D from N to {0,1} such that
 D(i)=1-f_i(i)
 - I i.e. we flipped the diagonal elements
- D must be different from every function in the list since D differs from f_i on input i
- Contradicts our assumption that the list had all such functions!
- Corollary: There is some function f from N to {0,1} not computed by any program
 more functions than programs!

Undecidability of the Halting Problem

- Suppose that there is a program H that computes the answer to the Halting Problem
- We'll build a similar table with all the possible programs down one side and all the possible inputs along the other and do a diagonal flip to produce a contradiction

12

					i	npu	ıt						
		ε	0	1	00	01	10	11	000	001	010	011	
	ε	0	1	1	0	1	1	1	0	0	0	1	
	0	1	1	0	1	0	1	1	0	1	1	1	
	1	1	0	1	0	0	0	0	0	0	0	1	
Ð	00	0	1	1	0	1	0	1	1	0	1	0	
ğ	00 01 10 11 000 001	0	1	1	1	1	1	1	0	0	0	1	
Ē	10	1	1	0	0	0	1	1	0	1	1	1	
rar	11	1	0	1	1	0	0	0	0	0	0	1	
g	000	0	1	1	1	1	0	1	1	0	1	0	
ā	001				•								
					•			•					
	·	En	tries	s ar	e 1 if				n by the		halts or	n input	X 13

			~			npu			000	004	040		
		ε	0	1	00	01	10	11	000	001	010	011	
	ε	1	1	1	0	1	1	1	0	0	0	1	
	0	1	0	0	1	0	1	1	0	1	1	1	
	1	1	0	0	0	0	0	0	0	0	0	1	
Ð	00	0	1	1	1	1	0	1	1	0	1	0	
ğ	00 01 10 11 000 001	0	1	1	1	0	1	1	0	0	0	1	
Ē	10	1	1	0	0	0	0	1	0	1	1	1	
la	11	1	0	1	1	0	0	1	0	0	0	1	
g	000	0	1	1	1	1	0	1	0	0	1	0	
ā	001							•					
								•					
	•										e halting iagonal)	1.

