CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 18
Instructor: Paul Beame

Turing Machines

- Church-Turing Thesis

I Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

| Huge numbers of equivalent models to TM's based on radically different ideas

Universal Turing Machine

I. A Turing machine interpreter U

I On input the code of a program (or Turing machine) P and an input x, U outputs the same thing as P does on input x

Basis for modern stored-program computer
Notation:
| We'll write <P> for the code of program P and $<P, x>$ for the pair of the program code and input

Halting Problem

Given: the code of a program P and an input x for P, i.e. given $<P, x>$
Output: 1 if P halts on input x and 0 if P does not halt on input x

- Theorem (Turing): There is no program that solves the halting problem
"The halting problem is undecidable"

Proof ideas: Countability (Cantor 1875)

I Defn: A set S is countable iff there is a function mapping the natural numbers N onto S .
I i.e. we can write $S=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$, i.e. $f(i)=s_{i}$
\| All finite sets are countable.

- The natural numbers are countable

1 The integers are countable

$$
\| Z=\{0,1,-1,2,-2,3,-3,4,-4,5,-5, \ldots\}
$$

$$
1 \quad 1234567891011 \ldots
$$

Countability

The set of all finite strings with any alphabet is countable,

```
        | e.g. binary strings
```

 \(\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\)
 I \(S=\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100, \ldots\}\)

I i.e. list strings in order of increasing length

- Any program code is a string and given any string w, we can interpret w as a program (syntactically incorrect programs are just no-ops) so the set of all programs is countable, too.

Uncountability

The set of all functions from the natural numbers N to $\{0,1\}$ is not countable.

Suppose it were and we had a list of all such functions $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$

We build an infinite table of these functions

input													
f_{1}		0	11	0	1	1	10	00	0	1		1	
f_{2}		1	10	1	0	1	10	01	1	1			
f_{3}		1	01	0	0	0	0	00	0	1		1	
f_{4}		0	11	0	1	0	11	10	1	0			
- f_{5}		0	10	0	1	1	10	00	0	1			
.응 f_{6}			10	1	1	1	10	01	1	1			
$\stackrel{\mathrm{O}_{5}}{ } \mathrm{f}_{7}$		1	01	0	0	1	0	00	0	1			
${ }^{3} \mathrm{f}$		0	11	0	0	0	11	10	1	0		1	
									

Diagonalization

|l Define function D from N to $\{0,1\}$ such that

Undecidability of the Halting Problem

Suppose that there is a program H that computes the answer to the Halting Problem
I i.e. we flipped the diagonal elements
II D must be different from every function in the list since D differs from f_{i} on input i
\| Contradicts our assumption that the list had all such functions!
Corollary: There is some function from N to $\{0,1\}$ not computed by any program I more functions than programs!

We'll build a similar table with all the possible programs down one side and all the possible inputs along the other and do a diagonal flip to produce a contradiction

Finishing the argument

- D must be different from any program in the list.
- Suppose it has code <D>

I then D halts on input < D> iff
| H outputs 0 given program D and input <D> iff
|| P runs forever on input < $\mathrm{P}>$

