CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 14
Instructor: Paul Beame

Multiplying Faster

On the first HW you analyzed our usual
algorithm for multiplying numbers
O(n2) time

We can do better!

We'll describe the basic ideas by multiplying
polynomials rather than integers

Advantage is we don't get confused by
worrying about carries at first

Note on Polynomials

These are just formal sequences of
coefficients so when we show something
multiplied by xk it just means shifted k places
to the left

Polynomial Multiplication

Given:
Degree m-1 polynomials P and Q
P=ay+a, x+a,x?+ ... +a,,X"2 +a, ,xmt
Q=by+b; x+b,x2+ ... +b,x™2+b xm1
Compute:
Degree 2m-2 Polynomial P Q
P Q = aygh, + (agh,+a,by) x + (agb,+a;b; +a,by) x?
+..t (@pobmatan bn,) X238 + a, by, x2m2
Obvious Algorithm:
Compute all ajb; and collect terms
O (n?) time

Naive Divide and Conquer

Assume m=2k

P=(ag+a, x+a,x2+..+a. xkt)+

(@ + Qg X Foo + X2+ a xkl) xk
=P, + Py xk

Q=Qp+ QX

P Q = (Po+PX)(Qo+Q;x¥)
=PQo + (P1Qo*+P Q)X + P1Q X%

4 sub-problems of size k=m/2 plus linear combining

T(M)=4T(m/2)+cm
Solution T(m) = O(m?)

Karatsuba’s Algorithm

A better way to compute the terms
Compute
PoQo
PQ,
(Po+P1)(Qo+Qy) which is PoQo+P,Q+PoQ:+P1Qy
Then
PoQ1+P1Qp = (Po+P1)(Qut+Qy) - PoQo - P1Qy
3 sub-problems of size m/2 plus O(m) work
T(m) =3 T(m/2) + cm
T(m) = O(m®) where a = log,3 = 1.59...




Karatsuba’s Algorithm
Alternative

Compute
Ao=PoQo
A=(PotP)(Qo*+Qy), i-e. PoQo+P1Qo+PQ+P;Q;
A1=(Po- P1)(Qo- Qy), i-e. PoQq- P1Qy-PoQ+P1Q;
Then
P1Q; = (AtAL)I2 - Ay
PoQ1+P1Q = (A - Ap)I2
3 sub-problems of size m/2 plus O(m) work
T(m) =3 T(m/2) + cm
T(m) = O(m®) where o = log,3 = 1.59...

What Karatsuba’s Algorithm did

For y=xk we wanted to compute
P(y)Q()=(Po*+P1 )(Qu*+QuY)
We evaluated
P0)=P, Q(0)=Q,
P(1) = Py+P,and Q(1) = Qu+Q,
P(-1) = Po- Py and Q(-1) = Qy-Q,
We multiplied P(0)Q(0), P(1)Q(1), P(-1)Q(-1)
We then used these 3 values to figure out
what the degree 2 polynomial P(y)Q(y) was
Interpolation .

Interpolation

Given set of values at 5 points

Interpolation

Find unique degree 4 polynomial
going through these points

Multiplying Polynomials by
Evaluation & Interpolation

Any degree n-1 polynomial R(y) is determined
by R(Yo), ... R(y,.1) for any n distinct yg,...,Y,.1

To compute PQ (assume degree at most n-1)
Evaluate P(yy),..., P(Yn.1)
Evaluate Q(Y),---,Q(Yn.1)
Multiply values P(y;)Q(y;) fori=0,...,, n-1
Interpolate to recover PQ

Multiplying Polynomials by
Evaluation & Interpolation

ordinary polynomial

P:ragay,...an multiplication ©(n2) ;
Q: by,by,....b 4 c ab > |R:Cy,CyyeeCrg
k < Zx i 'Y
_ i+ ) ;
evaluation interpolation
at Yo, oYna from Yo,... Y1
o(?) 0o(?)
A
P(¥0).Q(¥o) R(yo)=P(yo)Q(Yo)

P(yl),Q(yl) point-wise multiplication R(yl):P(yl)Q(yl)

of numbers O(n)

e
O02)- Qrr) R0 =P(¥0) QYnt)
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Complex Numbers  i#=-1

a+hi

041 1. add angles
2. multiply lengths

e+fi = (a+bi)(c+di)

T ’ a+hi =cos 6 +i sin 6 = ei®
) c+di =cos ¢ +i sin ¢ = ei?
e=1 e+fi =cos (B+4) +i sin (B+9) = ei(®+)

To multiply complex numbers:

Primitive n-throotof 1 w=w,

Let w=w, = el 2tn

- Ty W = cos (217n) +i sin (217n)
=1 A WP=1=w8
{ Properties:
w'=1.

Any otherzs.t. z"=1

has z= w* for some k<n.
If nis even w?=w,, is a
i2=-1 primitive n/2-th root of 1.
e2r =1 WKNI2 = _ (K
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Multiplying Polynomials by
Fast Fourier Transform

X ordinary polynomial
Pragay,....an multiplication ©(n?) )
Q: bg,by,.., Bt c - Sab > |R:iCy,Cq,...,Chq
i~ Yy
evaluation " interpolation
at 1,w,...,w"! from 1,w,...,w"1
O(n log n) O(nlog n)
A
P(1).Q) R(1)=P(1)Q(1)

P(6),Q(w) | point-wise muttiplication R(w)=P(w)Q(w)
P(a?),Q(a?) of numbers O(n) R(w?)=P(@?)Q(w?)

P(w").Qw)

R(@")=P(@")Q(w")
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The key idea (since n is even)

P(w)=ayta,wta,w?+aw+a,uwi+.. . +a, w"t
=[a, +a,0? +a,0’ +...+ a 0" |
+a, wtra,w? +a-wP +...+a_, L |
= Peven((*)z) tw Podd((*)z)

P(-w)=a,-a,wta,u? -a;w*+a,w*... -a, 0"
g a, +a,u? +a,w* +..+ a_,w'? |
-lla,wtaw’ +a,wd +...+a, ) |
= Peven((*)z) - W Podd((*)z)

The recursive idea for
n a power of 2
Also
Poven @and P44 have degree n/2
P((**):Peven((*)Zk)"'kaodd(mZk)
P('(A)k):Peven((.k)Zk)'(.d(Podd((.k)Zk) w? is an n/2-th root of 1 so
blem is of
Recursive Algorithm Bsmatersze
-—
Evaluate P, at 1,0?,w",..., 002
Evaluate P, at 1,07,0%,...,00"2
Combine to compute P at 1,w,0?,...,w"21
Combine to compute P at -1,-0,-0?,...,-w"21
(|e at lelZ’ wnl2+1 , wnl2+2’m’ le-l) .

Analysis and more

Run-time
T(n)=2T(n/2)+cn so T(n)=O(n log n)

So much for evaluation ... what about
interpolation?

Given

r=R(1), r=R(w), ,=R(A),..., M1=R(™?)
Compute

Cos C1ye-sCpg St R(X)=Cy+CyX+...Cp X1




Interpolation = Evaluation:
strange but true

Weird fact:
If we define a new polynomial
T(X) = 1o+ X + X2+ 415X where rg, 1y, ..,
are the evaluations of R at 1, w, ..., w"?!
Then ¢, =T(w*)/n for k=0,...,n-1

So...
evaluate T at 1,w?,w?2,...,oy(D then divide each by n
to get the c,,...,.C,;
w? behaves just like w did so the same O(n log n)
evaluation algorithm applies !

Why this is called the discrete
Fourier transform

Real Fourier series

Given a real valued function f defined on [0,21]

the Fourier series for f is given by

f(x)=a,*+a, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...

where 1

an=— [f(x) cos(mx) dx|
ZHJ;

is the component of f of frequency m

In signal processing and data compression one
ignores all but the components with large a,, and
there aren’t many since z a? =1

m=0

Why this is called the discrete
Fourier transform

Complex Fourier series
Given a function f defined on [0,21]
the complex Fourier series for f is given by
f(z)=bg+b, €1z + b, €%z +._ .+ b emz+. .
where

12n i
b.= — [f(z)e™ dz
m ZH{()

is the component of f of frequency m

If we discretize this integral using values at n

equally spaced points between 0 and 2rtwe get

1T e 1T e
bm=ﬁgfk92k i :ﬁ;,fk w™*™ where f,=f(2ktvn)

just like interpolation!




