CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 11
Instructor: Paul Beame

Minimum Spanning Trees
(Forests)

Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

Find a subgraph T of G of minimum total
weight s.t. every pair of vertices
connected in G are also connected in T

if G is connected then T is a tree otherwise it
is a forest

Weighted Undirected Graph

0 .. 4
Q?;) @00 ®
A
AN > T
4 @59 @8 @
.... . 57
9 ‘® 3

First Greedy Algorithm

Prim’s Algorithm:
start at a vertex v
add the cheapest edge adjacent to v

repeatedly add the cheapest edge that joins
the vertices explored so far to the rest of the
graph.

Second Greedy Algorithm

Kruskal's Algorithm
Start with the vertices and no edges

Repeatedly add the cheapest edge that joins
two different components. i.e. that doesn’t
create a cycle

Why greed is good

Definition: Given a graph G=(V,E), a cut of G
is a partition of V into two non-empty pieces, S
and V-S

Lemma: For every cut (S,V-S) of G, there is a
minimum spanning tree (or forest) containing
any cheapest edge crossing the cut, i.e.
connecting some node in S with some node in
V-S.

call such an edge safe

Cuts and Spanning Trees

The greedy algorithms always
choose safe edges

Prim’s Algorithm
Always chooses cheapest edge from current
tree to rest of the graph
This is cheapest edge across a cut which has
the vertices of that tree on one side.

Prim’s Algorithm

The greedy algorithms always
choose safe edges

Kruskal's Algorithm

Always chooses cheapest edge connected
two pieces of the graph that aren’t yet
connected

This is the cheapest edge across any cut
which has those two pieces on different sides
and doesn’t split any current pieces.

Kruskal’s Algorithm

Kruskal’s Algorithm

Proof of Lemmma

Suppose you have an MST not using cheapest edge e

w(e)=w(f).w(g).w(h)

Endpoints of e, u and v must be connected in T 13

Proof of Lemmma

Replacing h by e does not increase weight of T

w(e)=w(f),w(g).w(h)

All the same points are connected by the new tree 14

Naive Prim’s Algorithm
Implementation & Analysis

Computing the minimum weight edge at
each stage. O(m) per step new vertex

n vertices in total

O(nm) overall

Kruskal’s Algorithm
Implementation & Analysis

First sort the edges by weight O(m log m)

Go through edges from smallest to largest

if endpoints of edge e are currently in
different components

then add to the graph

else skip
Union-find data structure handles last part
Total cost of last part: O(m a(n)) where
a(n)<<log m
Overall O(m log n)

Union-find disjoint sets data
structure

Maintaining components
start with n different components
one per vertex
find components of the two endpoints of e
2m finds
union two components when edge connecting
them is added
n-1 unions

Prim’s Algorithm with Priority
Queues

For each vertex u not in tree maintain current
cheapest edge from tree to u
Store u in priority queue with key = weight of
this edge
Operations:
n-1 insertions (each vertex added once)

n-1 delete-mins (each vertex deleted once)

pick the vertex of smallest key, remove it from the p.q. and
add its edge to the graph

<m decrease-keys (each edge updates one vertex)

18

Prim’s Algorithm with Priority
Queues

Priority queue implementations

Array
insert O(1), delete-min O(n), decrease-key O(1)
total O(n+n2+m)=0(n?)

Heap
insert, delete-min, decrease-key all O(log n)
total O(m log n)

d-Heap (d=m/n)
insert, delete-min, decrease-key all O(log,,, n)
total O(m log,,,;, n) 9

