
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 11

Instructor: Paul Beame

2

Minimum Spanning Trees
(Forests)

❚ Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

❚ Find a subgraph T of G of minimum total
weight s.t. every pair of vertices
connected in G are also connected in T
❙ if G is connected then T is a tree otherwise it

is a forest

3

Weighted Undirected Graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

4

First Greedy Algorithm

❚ Prim’s Algorithm:
❙ start at a vertex v
❙ add the cheapest edge adjacent to v
❙ repeatedly add the cheapest edge that joins

the vertices explored so far to the rest of the
graph.

5

Second Greedy Algorithm

❚ Kruskal’s Algorithm
❙ Start with the vertices and no edges
❙ Repeatedly add the cheapest edge that joins

two different components. i.e. that doesn’t
create a cycle

6

Why greed is good

❚ Definition: Given a graph G=(V,E), a cut of G
is a partition of V into two non-empty pieces, S
and V-S

❚ Lemma: For every cut (S,V-S) of G, there is a
minimum spanning tree (or forest) containing
any cheapest edge crossing the cut, i.e.
connecting some node in S with some node in
V-S.
❙ call such an edge safe

2

7

Cuts and Spanning Trees

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

8

The greedy algorithms always
choose safe edges

❚ Prim’s Algorithm
❙ Always chooses cheapest edge from current

tree to rest of the graph
❙ This is cheapest edge across a cut which has

the vertices of that tree on one side.

9

Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

10

The greedy algorithms always
choose safe edges

❚ Kruskal’s Algorithm
❙ Always chooses cheapest edge connected

two pieces of the graph that aren’t yet
connected

❙ This is the cheapest edge across any cut
which has those two pieces on different sides
and doesn’t split any current pieces.

11

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

12

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

3

13

Proof of Lemma

Suppose you have an MST not using cheapest edge e

e
u

v

f

g

h

w(e)≤w(f),w(g),w(h)

Endpoints of e, u and v must be connected in T 14

Proof of Lemma

Replacing h by e does not increase weight of T

e
u

v

f

g

h

w(e)≤w(f),w(g),w(h)

All the same points are connected by the new tree

15

Naive Prim’s Algorithm
Implementation & Analysis

❚ Computing the minimum weight edge at
each stage. O(m) per step new vertex

❚ n vertices in total

❚ O(nm) overall

16

Kruskal’s Algorithm
Implementation & Analysis

❚ First sort the edges by weight O(m log m)
❚ Go through edges from smallest to largest

❙ if endpoints of edge e are currently in
different components
❘ then add to the graph

❘ else skip

❚ Union-find data structure handles last part
❚ Total cost of last part: O(m α(n)) where

α(n)<< log m
❚ Overall O(m log n)

17

Union-find disjoint sets data
structure

❚ Maintaining components
❙ start with n different components

❘ one per vertex

❙ find components of the two endpoints of e
❘ 2m finds

❙ union two components when edge connecting
them is added
❘ n-1 unions

18

Prim’s Algorithm with Priority
Queues

❚ For each vertex u not in tree maintain current
cheapest edge from tree to u
❙ Store u in priority queue with key = weight of

this edge
❚ Operations:

❙ n-1 insertions (each vertex added once)

❙ n-1 delete-mins (each vertex deleted once)
❘ pick the vertex of smallest key, remove it from the p.q. and

add its edge to the graph

❙ <m decrease-keys (each edge updates one vertex)

4

19

Prim’s Algorithm with Priority
Queues

❚ Priority queue implementations
❙ Array

❘ insert O(1), delete-min O(n), decrease-key O(1)

❘ total O(n+n2+m)=O(n2)

❙ Heap
❘ insert, delete-min, decrease-key all O(log n)

❘ total O(m log n)

❙ d-Heap (d=m/n)
❘ insert, delete-min, decrease-key all O(logm/n n)

❘ total O(m logm/n n)

