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Winter 2001
Lecture 11

Instructor: Paul Beame
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Minimum Spanning Trees
(Forests)

❚ Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

❚ Find a subgraph T of G of minimum total
weight s.t. every pair of vertices
connected in G are also connected in T
❙ if G is connected then T is a tree otherwise it

is a forest

3

Weighted Undirected Graph
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First Greedy Algorithm

❚ Prim’s Algorithm:
❙ start at a vertex v
❙ add the cheapest edge adjacent to v
❙ repeatedly add the cheapest edge that joins

the vertices explored so far to the rest of the
graph.
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Second Greedy Algorithm

❚ Kruskal’s Algorithm
❙ Start with the vertices and no edges
❙ Repeatedly add the cheapest edge that joins

two different components.  i.e. that doesn’t
create a cycle
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Why greed is good

❚ Definition:  Given a graph G=(V,E), a cut of G
is a partition of V into two non-empty pieces,  S
and V-S

❚ Lemma:  For every cut (S,V-S) of G, there is a
minimum spanning tree (or forest) containing
any cheapest edge crossing the cut, i.e.
connecting some node in S with some node in
V-S.
❙ call such an edge safe
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Cuts and Spanning Trees
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The greedy algorithms always
choose safe edges

❚ Prim’s Algorithm
❙ Always chooses cheapest edge from current

tree to rest of the graph
❙ This is cheapest edge across a cut which has

the vertices of that tree on one side.
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Prim’s Algorithm
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The greedy algorithms always
choose safe edges

❚ Kruskal’s Algorithm
❙ Always chooses cheapest edge connected

two pieces of the graph that aren’t yet
connected

❙ This is the cheapest edge across any cut
which has those two pieces on different sides
and doesn’t split any current pieces.
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Proof of Lemma

Suppose you have an MST not using cheapest edge e

e
u

v

f

g

h

w(e)≤w(f),w(g),w(h)

Endpoints of e, u and v must be connected in T 14

Proof of Lemma

Replacing h by e does not increase weight of T

e
u

v

f

g

h

w(e)≤w(f),w(g),w(h)

All the same points are connected by the new tree
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Naive Prim’s Algorithm
Implementation & Analysis

❚ Computing the minimum weight edge at
each stage.  O(m) per step new vertex

❚ n vertices in total

❚ O(nm) overall
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Kruskal’s Algorithm
Implementation & Analysis

❚ First sort the edges by weight O(m log m)
❚ Go through edges from smallest to largest

❙ if endpoints of edge e are currently in 
different components
❘ then add to the graph

❘ else skip

❚ Union-find data structure handles last part
❚ Total cost of last part: O(m α(n)) where

α(n)<< log m
❚ Overall O(m log n)
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Union-find disjoint sets data
structure

❚ Maintaining components
❙ start with n different components

❘ one per vertex

❙ find components of the two endpoints of e
❘ 2m finds

❙ union two components when edge connecting
them is added
❘ n-1 unions
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Prim’s Algorithm with Priority
Queues

❚ For each vertex u not in tree maintain current
cheapest edge from tree to u
❙ Store u in priority queue with key = weight of

this edge
❚ Operations:

❙ n-1 insertions (each vertex added once)

❙ n-1 delete-mins (each vertex deleted once)
❘ pick the vertex of smallest key, remove it from the p.q. and

add its edge to the graph

❙ <m decrease-keys (each edge updates one vertex)
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Prim’s Algorithm with Priority
Queues

❚ Priority queue implementations
❙ Array

❘ insert O(1), delete-min O(n), decrease-key O(1)

❘ total O(n+n2+m)=O(n2)

❙ Heap
❘ insert, delete-min, decrease-key all O(log n)

❘ total O(m log n)

❙ d-Heap  (d=m/n)
❘ insert, delete-min, decrease-key all O(logm/n n)

❘ total O(m logm/n n)


