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DFS(v) for a directed graph
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tree edges

back edges

forward edges

← cross edges

NO → cross edges
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Strongly-connected components

❚ In directed graph if there is a path from a
to b there might not be one from b to a

❚ a and b are strongly connected iff there
is a path in both directions (i.e. a directed
cycle containing both a and b

❚ Breaks graph into components
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Strongly-connected components
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Uses for SCC’s

❚ Optimizing compilers need to find loops,
which are SCC’s in the program flow
graph.

❚ If (u,v) means process u is waiting for
process v, SCC’s  show deadlocks.
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Directed Acyclic Graphs

❚ If we collapse each SCC to a single vertex
we get a directed graph with no cycles
❙ a directed acyclic graph or DAG

❚ Many problems on directed graphs can be
solved as follows:
❙ Compute SCC’s and resulting DAG
❙ Do one computation on each SCC
❙ Do another computation on the overall DAG
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Simple SCC Algorithm

❚ u,v in same SCC iff there are
paths u → v & v → u

❚ DFS from every u, v: O(nm) = O(n3)
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Better method

❚ Can compute all the SCC’s while doing a
single DFS!  O(n+m) time

❚ We won’t do the full algorithm but will give
some ideas
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Definition

The root of an SCC is the first vertex in it
visited by DFS.

Equivalently, the root is the vertex in the
SCC with the smallest number in DFS
ordering.
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Subgoal

❚ All members of an SCC are descendants
of its root.

❚ Can we identify some root?

❚ How about the root of the first SCC
completely explored by DFS?

❚ Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)
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Definition

x is an exit from v (from v’s subtree) if
❙ x is not a descendant of v, but
❙ x is the head of a (cross- or back-) edge from

a descendant of v (including v itself)

❚ Any non-root vertex v has an exit

v
x

v
x
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Finding SCC’s

❚ A root nodes v sometimes have exits
❙ only via a cross-edge to a node x that is not in

a component with a root above v, e.g. vertex
10 in the example.
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Strongly-connected components
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Minimum Spanning Trees
(Forests)

❚ Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

❚ Find a subgraph T of G of minimum total
weight s.t. every pair of vertices
connected in G are also connected in T
❙ if G is connected then T is a tree otherwise it

is a forest
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Weighted Undirected Graph
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First Greedy Algorithm

❚ Prim’s Algorithm:
❙ start at a vertex v
❙ add the cheapest edge adjacent to v
❙ repeatedly add the cheapest edge that joins

the vertices explored so far to the rest of the
graph.

❚ We’ll show it works later
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

24

Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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MST weight =41
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Second Greedy Algorithm

❚ Kruskal’s Algorithm
❙ Start with the vertices and no edges
❙ Repeatedly add the cheapest edge that joins

two different components.  i.e. that doesn’t
create a cycle

❚ Again we save the proof of correctness for
later
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

36

Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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produces same tree as 
Prim’s algorithm


