CSE 417: Algorithms and Computational Complexity

Winter 2001
Lecture 10
Instructor: Paul Beame

Strongly-connected components

In directed graph if there is a path from a to b there might not be one from b to a
a and b are strongly connected iff there is a path in both directions (i.e. a directed cycle containing both a and b

Breaks graph into components

Uses for SCC's

|| Optimizing compilers need to find loops, which are SCC's in the program flow graph.
II If (u, v) means process u is waiting for process v, SCC's show deadlocks.

Directed Acyclic Graphs

II If we collapse each SCC to a single vertex we get a directed graph with no cycles I a directed acyclic graph or DAG

- Many problems on directed graphs can be solved as follows:
| Compute SCC's and resulting DAG
I Do one computation on each SCC
I Do another computation on the overall DAG

Better method

Can compute all the SCC's while doing a single DFS! O(n+m) time

- We won't do the full algorithm but will give some ideas

Simple SCC Algorithm

$\| u, v$ in same SCC iff there are paths $u \rightarrow v \& v \rightarrow u$

- DFS from every $u, v: O(n m)=O\left(n^{3}\right)$

Definition

The root of an SCC is the first vertex in it visited by DFS.

Equivalently, the root is the vertex in the SCC with the smallest number in DFS ordering.

Subgoal

- All members of an SCC are descendants of its root.
- Can we identify some root?

II How about the root of the first SCC completely explored by DFS?

- Key idea: no exit from first SCC (first SCC is leftmost "leaf" in collapsed DAG)

Finding SCC's

A root nodes v sometimes have exits
Il only via a cross-edge to a node x that is not in a component with a root above v, e.g. vertex 10 in the example.

Strongly-connected components

Prim's Algorithm

Second Greedy Algorithm

Kruskal's Algorithm
Start with the vertices and no edges Repeatedly add the cheapest edge that joins two different components. i.e. that doesn't create a cycle

- Again we save the proof of correctness for later

