CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 1 Instructor: Paul Beame TA: Gidon Shavit

- Input: Given a set **S** of **n** points in the plane
- Output: The shortest cycle tour that visits each point in the set **S**.
- How might you solve it?

Nearest Neighbor Heuristic

- Start at some point p₀
- Walk first to its nearest neighbor p₁
- Repeatedly walk to the nearest unvisited neighbor until all points have been visited
- Then walk back to p₀

Efficiency

- The two incorrect algorithms were greedy
 - I they made choices and never reconsidered their choices
 - often it does not work
 - when it does the algorithms are typically efficient
- Our correct algorithm is incredibly slow
 - 20! is so large that counting to one billion in a second it would still take 2.4 billion seconds
 (around 70 years!)

13

15

Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time ≈ # of instructions executed in an ideal assembly language
 - each simple operation (+,*,-,=,if,call) takes
 one time step
 - each memory access takes one time step
- No bound on the memory

We left out things but...

- Things we've dropped
 - I memory hierarchy
 - I disk, caches, registers have many orders of magnitude differences in access time
- not all instructions take the same time in practiceHowever,
 - I the RAM model is very useful for understanding how to design algorithms and get a good sense of how
 - quickly they will work
 - one can usually tune implementations so that the hierarchy etc is not a huge factor

What kind of analysis?

Problem size n

- Worst-case complexity: max # steps algorithm takes on any input of size n
- Best-case complexity: min # steps algorithm takes on any input of size n
- Average-case complexity: avg # steps algorithm takes on inputs of size n

16

Pros and cons:

- Best-case
 - unrealistic overselling
 - I can tune an algorithm so it works on one easy input
 - guarantee isn't comforting
- Worst-case
 - a fast algorithm has a comforting guarantee
 - I no way to cheat by hard-coding special cases
 - maybe too pessimistic
- Average-case
 - over what distribution?
 - I different people may have different average problems