CSE 417: Algorithms and Computational Complexity

Winter 2001
Instructor: Paul Beame
TA: Gidon Shavit

What the course is about

- Design of Algorithms

I design methods
|| common or important types of problems
| how to analyze algorithms

What the course is about

Computability
Turing machines and ideal computers
I there are well-defined problems that even ideal computers can't solve
e.g. halting problem

What the course is about

Complexity and NP-completeness
\| simply being able to solve problems in principle is not enough
algorithms must be efficient, too \| NP
wide class of useful problems whose solutions can be easily checked but not necessarily found efficiently
| NP-completeness
useful for understanding when problems are hard to solve

On hardness

- Cryptography (e.g. RSA, SSL in browsers)

I Secret: p,q prime, say 512 bits each
| Public: n which equals pxq, 1024 bits

- In principle

I there is an algorithm that given n will find p and q by trying all 2^{512} possible p's.

- In practice
\| security of RSA depends on the fact that no efficient algorithm is known for this

Algorithms versus Machines

- We all know about Moore's Law and the exponential improvements in hardware but...
. Example: Numerical linear algebra for weather prediction 1967-1987

II 7 orders of magnitude improvement in speed
| 3 orders of magnitude improvement in hardware
| 4 orders of magnitude improvement in algorithms

What you'll have to do

- No programming

I goals of the course are not nitty-gritty programming detail
getting them right is of course very important but too time-consuming for the amount of material

- Written homework assignments

English exposition and pseudo-code
I Analysis and argument as well as design
Midterm \& Final Exam

Rough Division of Time

- Algorithms (6 weeks)
| Analysis of Algorithms
|| Basic Algorithmic Design Techniques
\| Graph Algorithms
\| Fast Fourier Transform
1 Pattern Matching \& Finite Automata
\| Turing Machines \& Computability (1.5 weeks)
I. Complexity \& NP-completeness (2 weeks)

