CSE 417: Algorithms and Computational Complexity

Winter 2001 Instructor: Paul Beame TA: Gidon Shavit

What the course is about

- Design of Algorithms
 - I design methods
 - common or important types of problems
 - I how to analyze algorithms

2

What the course is about

- Computability
 - I Turing machines and ideal computers
 - I there are well-defined problems that even ideal computers can't solve
 - e.g. halting problem

What the course is about

- Complexity and NP-completeness
 - I simply being able to solve problems in principle is not enough
 - l algorithms must be efficient, too
 - NP
 - wide class of useful problems whose solutions can be easily checked but not necessarily found efficiently
 - NP-completeness
 - useful for understanding when problems are hard to solve

On hardness

- Cryptography (e.g. RSA, SSL in browsers)
 - Secret: p,q prime, say 512 bits each
 - Public: n which equals pxq, 1024 bits
- In principle
 - I there is an algorithm that given n will find p and q by trying all 2⁵¹² possible p's.
- In practice
 - security of RSA depends on the fact that no efficient algorithm is known for this

Algorithms versus Machines

- We all know about Moore's Law and the exponential improvements in hardware but...
- Example: Numerical linear algebra for weather prediction 1967-1987
- 7 orders of magnitude improvement in speed
 - I 3 orders of magnitude improvement in hardware
 - I 4 orders of magnitude improvement in algorithms

6

What you'll have to do

- No programming
 - I goals of the course are not nitty-gritty programming detail
 - getting them right is of course very important but too time-consuming for the amount of material
- Written homework assignments
 - I English exposition and pseudo-code
 - Analysis and argument as well as design
- Midterm & Final Exam

Rough Division of Time

- Algorithms (6 weeks)
 - I Analysis of Algorithms
 - Basic Algorithmic Design Techniques
 - I Graph Algorithms
 - Fast Fourier Transform
 - Pattern Matching & Finite Automata
- Turing Machines & Computability (1.5 weeks)
- Complexity & NP-completeness (2 weeks)

3