CSE 417: Algorithms and
Computational Complexity

Winter 2001
Instructor: Paul Beame
TA: Gidon Shavit

What the course is about

Design of Algorithms
design methods
common or important types of problems
how to analyze algorithms

What the course is about

Computability
Turing machines and ideal computers

there are well-defined problems that even
ideal computers can't solve
e.g. halting problem

What the course is about

Complexity and NP-completeness

simply being able to solve problems in

principle is not enough
algorithms must be efficient, too

NP
wide class of useful problems whose solutions can
be easily checked but not necessarily found
efficiently

NP-completeness

useful for understanding when problems are hard
to solve 4

On hardness

Cryptography (e.g. RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals pxq, 1024 bits

In principle
there is an algorithm that given n will find p
and g by trying all 2512 possible p's.

In practice

security of RSA depends on the fact that no
efficient algorithm is known for this

Algorithms versus Machines

We all know about Moore’s Law and the
exponential improvements in hardware but...

Example: Numerical linear algebra for weather
prediction 1967-1987

7 orders of magnitude improvement in speed
3 orders of magnitude improvement in hardware
4 orders of magnitude improvement in algorithms




What you’ll have to do Rough Division of Time

No programming Algorithms (6 weeks)
goals of the course are not nitty-gritty Analysis of Algorithms
programming detail Basic Algorithmic Design Techniques
getting them right is of course very important but Graph Algorithms
too time-consuming for the amount of material Fast Fourier Transform
Written homework assignments Pattern Matching & Finite Automata
English exposition and pseudo-code Turing Machines & Computability (1.5 weeks)
Analysis and argument as well as design Complexity & NP-completeness (2 weeks)

Midterm & Final Exam




