
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Instructor: Paul Beame

TA: Gidon Shavit

2

What the course is about

❚ Design of Algorithms
❙ design methods
❙ common or important types of problems
❙ how to analyze algorithms

3

What the course is about

❚ Computability
❙ Turing machines and ideal computers
❙ there are well-defined problems that even

ideal computers can’t solve
❘ e.g. halting problem

4

What the course is about

❚ Complexity and NP-completeness
❙ simply being able to solve problems in

principle is not enough
❘ algorithms must be efficient, too

❙ NP
❘ wide class of useful problems whose solutions can

be easily checked but not necessarily found
efficiently

❙ NP-completeness
❘ useful for understanding when problems are hard

to solve

5

On hardness

❚ Cryptography (e.g. RSA, SSL in browsers)
❙ Secret: p,q prime, say 512 bits each
❙ Public: n which equals pxq, 1024 bits

❚ In principle
❙ there is an algorithm that given n will find p

and q by trying all 2512 possible p’s.

❚ In practice
❙ security of RSA depends on the fact that no

efficient algorithm is known for this
6

Algorithms versus Machines

❚ We all know about Moore’s Law and the
exponential improvements in hardware but...

❚ Example: Numerical linear algebra for weather
prediction 1967-1987

❚ 7 orders of magnitude improvement in speed
❙ 3 orders of magnitude improvement in hardware

❙ 4 orders of magnitude improvement in algorithms

2

7

What you’ll have to do

❚ No programming
❙ goals of the course are not nitty-gritty

programming detail
❘ getting them right is of course very important but

too time-consuming for the amount of material

❚ Written homework assignments
❙ English exposition and pseudo-code
❙ Analysis and argument as well as design

❚ Midterm & Final Exam
8

Rough Division of Time

❚ Algorithms (6 weeks)
❙ Analysis of Algorithms
❙ Basic Algorithmic Design Techniques
❙ Graph Algorithms
❙ Fast Fourier Transform
❙ Pattern Matching & Finite Automata

❚ Turing Machines & Computability (1.5 weeks)
❚ Complexity & NP-completeness (2 weeks)

