1. Consider the following program (which doesn't do anything interesting):
```
Procedure Split ( }A,L,n
    for}i=1 to 
        increment }A[L+i-1
    end for
    if n>1 then
        m\leftarrow\lfloorn/3\rfloor
        Split ( }A,L,m
        Split ( }A,L+m+1,m
        Split ( }A,L+2m+1,n-2m
    end if end
```

(a) Write a recurrence for the running time $T(n)$ of procedure Split on input array A of length n, integer L initially 1 , and integer n.
(b) What is solution of the recurrence you found using O notation? (You may assume that n is a power of 3.) (You do not need to justify your answer.)
2. (20 points) Consider the following program:

```
Procedure Slowzero( }A,n
    for }i=1\mathrm{ to }n-
        A[i]\leftarrow0
        Slowzero(A,i)
    end for
end
```

(a) Write a recurrence for the running time $T(n)$ of the Slowzero procedure on input A and n where A is of length n. (You may assume that the array A is referenced by name in the recursive calls so that it is never copied.)
(b) Prove that $T(n) \leq c 2^{n}-d$ for some constants c and d and all $n \geq 1$.
3. (15 points) Give an expression using Big-O notation that describes the behaviour of the following recurrences as closely as you can. (All fractions are assumed to be rounded down to the nearest integer.)
(a) For $n \geq 2, T(n) \leq 2 T(n / 2)+c n ; T(1)=1$.
(b) For $n \geq 3, T(n) \leq T(n-2)+n$; $T(1)=T(2)=1$.
(c) For $n \geq 2, T(n) \leq 3 T(n / 2)+c n$; $T(1)=1$.
(d) For $n \geq 2, T(n) \leq 2 T(n / 2)+c n^{3} ; T(1)=1$.
(e) For $n \geq 2, T(n) \leq 4 T(n / 2)+c n^{2} ; T(1)=1$.
4. Suppose that $T(n)=T(n / 4)+T(3 n / 4)+n$ for $n \geq 4$ and $T(n)=0$ for $n<4$. (All fractions are assumed to be rounded down to the nearest integer.)
Prove that $T(n) \leq c n \log _{2} n$ for some constant c.
Hint: Use guess and verify. Guess that it works and figure out how big c must be. Note that $\log _{2}(n / 4)=\log _{2} n-2$ and $\log _{2}(3 n / 4)<\log _{2} n-1 / 3$.
5. Design a simple divide and conquer algorithm to compute x^{n} using a very small number of multiplications.
Write a recurrence to describe the number of multiplications your algorithm uses as a function of n. Write out the solution of this recurrence. (You can use big-O notation.)
6. (a) Design an algorithm to take two strings $a=a_{1} a_{2} \cdots a_{m}$ and $b=b_{1} b_{2} \cdots b_{n}$, input in arrays A and B respectively, and determine the least number of delete and insert operations needed to transform a into b where each operation adds or removes exactly one character.
(b) Analyse the running time of your algorithm.
(c) Give a simple calculation using the result of the previous algorithm to determine the length of the longest common subsequence in a and b. That is, determine the largest ℓ such that there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{\ell} \leq m$ and $1 \leq j_{1}<j_{2}<\cdots<j_{\ell} \leq n$ so that $a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}}=b_{j_{1}} b_{j_{2}} \cdots b_{j_{\ell}}$.

