
CSE 417
Algorithms and Computational Complexity

Midterm solutions Winter 2000

1. (25 points) Prove by induction that whenn � 2 is a power of 2, the recurrenceT (n) = 2T (n=2) + 2

with the initial conditionT (2) = 1 has theprecisesolutionT (n) = 3n=2 � 2.

Proof by induction onn:

Base case:T (2) = 1 by definition. 3
2
2� 2 = 3� 2 = 1, so it is correct in this case.

Inductive Hypothesis: Assume thatT (m) = 3

2
m� 2 for all m < n.

Inductive Step:

T (n) = 2T (n=2) + 2 by definition

= 2(
3

2
(n=2)� 2) + 2 by the inductive hypothesis

= 2(3n=4� 2) + 2

= 3n=2� 2

Therefore by induction it holds for alln � 2.

1

2. (25 points) Recall theQuicksortalgorithm discussed in class and assume that we are running it on
distinctelements.

(a) What it theworst-caserunning time ofQuicksorton an array of lengthn if the pivot is always
chosen to be the first element of the array?

O(n2)

(b) What is theaverage-caserunning time ofQuicksorton an array of lengthn if the pivot is always
chosen to be the first element of the array?

O(n log n)

(c) Themedianof a set is the middle element of the set in sorted order. There is an algorithm that
computes the median of a set of sizen in worst-caseO(n) time. Suppose that inQuicksort,
instead of using the first element of the array as a pivot, we computed the median element of the
array and used it as the pivot.
Write a recurrence describing theworst-caserunning time of this modifiedQuicksortalgorithm
on an array of lengthn.

T (n) = 2T (n=2) + cn for some constantc where thecn term reflects the costs of both finding
the median and partitioning the array based on the pivot.

(d) Solve the recurrence for part (c).

T (n) = O(n logn) by the standard divide and conquer recurrence.

2

3. (25 points) Suppose you are given adirected acyclic graphG = (V;E) which has an integerre-
ward r(v) associated with each vertexv 2 V . For every nodev 2 V , we’d like to compute
best-reward (v) which is the largest value ofr(w) among all nodesw reachable fromv in G.
Describe an algorithm running inO(jV j+ jEj) time that computesbest-reward (v) for all nodes
v 2 V and argue that is both correct and has the desired running time.
(Hint: use topological sort and consider the vertices in the reverse of this order.)

Run topological sort on the graph to obtain vertices numberedv1; : : : ; vn. The important property is
that there are no edges going from a vertexvj to a vertexvi for i < j.

Forj = n to 1 do
best-reward(vj) = r(vj)

Forallw with (vj ; w) 2 E do
if best-reward(w) > best-reward(vj) then

best-reward(vj)=best-reward(w)
end for

end for

In total topological sort usesO(jV j + jEj) time and we look at each vertex and each edge exactly
once so we also takeO(jV j+ jEj) time. Note that the algorithm relies on the key property to ensure
that in the inner loop, all the best-rewards are already calculated.

Other solutions: For the subgraph reachable from a node v one can do DFS and in the postwork on a
node set each nodes best-reward value to be the largest of the best-rewards in its children. However,
to do this for all nodes v would seem to requireO(jV j(jV j+ jEj)) work. However, one could modify
DFS so that when we repeat DFS on another node, if that node is alread visited then we don’t visit
it or the nodes reachable from it and instead we just take its best-reward value that’s already been
computed.

Common problems: assuming all larger numbered vertices are reachable fromvj and assuming you
only needed to compute this for one vertexv.

3

4. (25 points) Consider the following recursive function designed for integersm, n � 1 (don’t worry
about its meaning).

Function Best-Match(m, n)
if (m = 1 or n = 1) then

return 1
else

if n is odd then
k (n+1)/2

else
k n/2

end if
return maxfBest-Match(m,k)+Best-Match(m-1,n), Best-Match(m,n-1) g

end if
end

(a) UseDynamic Programmingto rewrite this function to be much more efficient.

Here is the Dynamic Programming solution with the simplest change to the code I can think of.
For efficiency one would get rid of the largeif inside the for loops and instead have two extra
single initialization loops.

Function Best-Match(m, n)
for i = 1 to m Do

for j = 1 to n Do
if (i = 1 or j = 1) then

Table[i,j] 1
else

if j is odd then
k (j+1)/2

else
k j/2

end if
return maxfTable[i,k]+Table[i-1,j], Table[i,j-1] g

end if
end for

end for
Return Table[m,n]

end

(b) What is theTimeandStorage Spaceused by your new algorithm?

O(mn) for both, although space can be reduced toO(n) by storing only the table for the current
and previous rows.

4

