
CSE/STAT 416
Neural Networks
Pre-Lecture Videos

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

July 17 , 2024

Deep
Learning

A lot of the buzz about ML recently has come from recent
advancements in deep learning.

When people talk about “deep learning” they are generally
talking about a class of models called neural networks that are a
loose approximation of how our brains work.

2

Recall:
Linear
Classifier

Remember the linear classifier based on score

3

w 0
+

w
1

x[
1]

 +
 w

2
x[

2]
 +

 …
 +

 w
d

x[
d]

=
0Score(x) > 0 Score(x) < 0

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]

Perceptron
Graphical representation of this same classifier

This is called a perceptron 4

!
!"#

$

𝑤!𝑥 𝑗 = 𝑤% + 𝑤#𝑥 1 + … + 𝑤$𝑥[𝑑]

𝑔 𝑆𝑐𝑜𝑟𝑒 𝑥 = 1, 𝑖𝑓 !
!"#

$

𝑤!𝑥[𝑗] > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Input Output

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd

XOR The perceptron can learn most boolean functions, but XOR
always has to ruin the fun.

This data is not linearly separable, therefore can’t be learned
with the perceptron

5

𝒙𝟏 𝒙𝟐 𝒚

0 0 0

0 1 1

1 0 0

1 1 1

Multi-Layer
Perceptron
(Neural
Network)

Idea: Combine these perceptrons in layers to learn more complex
functions.

6

Neural
Network
Diagram
Simplified

§ Since the inputs are the same, typically we combine them in
the diagram, with multiple arrows coming out.

§ We don’t explicitly show the sum and activation function –
that is implicitly a part of each node.

7

Neural
Network
Diagram
Simplified
Further

§ Oftentimes, the bias is not explicitly shown as another input,
and instead written on top of a node.

§ You will see both types of diagrams in this course.

8

b1

b2

bd

XOR
Notice that we can represent

𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥[2] 𝑂𝑅 (! 𝑥 1 𝐴𝑁𝐷 𝑥 2)

9

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

XOR This is a 2-layer neural network

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2
= 𝑔(−0.5 + 𝑥 1 − 𝑥 2)

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2
= 𝑔(−0.5 − 𝑥 1 + 𝑥 2)

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2
= 𝑔(−0.5 + 𝑣 1 + 𝑣 2)

10

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

Neural
Network

Two layer neural network (alt. one hidden-layer neural network)

Single

𝑜𝑢𝑡 𝑥 = 𝑔 𝑤% +!
!

𝑤!𝑥 𝑗

1-hidden layer

𝑜𝑢𝑡 𝑥 = 𝑔 𝑤% + !
(

𝑤(𝑔 𝑤%
(() +!

!

𝑤!
(𝑥 𝑗

11

Power of 2-
layer NN

A surprising fact is that a 2-layer network can represent any
function, if we allow enough nodes in hidden layer.

For this example, consider regression function with one input.

See more here:
http://neuralnetworksanddeeplearning.com/chap4.html

12

x

v[1]

v[2]

Σ

http://neuralnetworksanddeeplearning.com/chap4.html

CSE/STAT 416
Neural Networks

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

July 17 , 2024

❓ Questions? Raise hand or sli.do #cs416
🎵 Listening to: Lady Lamb

Aside:
Missing Data

14

Missing Data:
Idea 1

15

Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 1: Remove rows (datapoints) with missing values.

Missing Data:
Idea 2

16

Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 2: Remove columns (features) with missing values.

Missing Data:
Idea 3

17

Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 3: Treat missing values as a separate value of the feature (only
Decision Trees)

Missing Data:
Idea 4

18

Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 4: Replace missing values with a reasonable statistic (Imputation)

(Most
Commonly
Used!)

Introduction
to Neural
Networks

19

Roadmap
So Far

1. Housing Prices - Regression
- Regression Model
- Assessing Performance
- Ridge Regression
- LASSO

2. Sentiment Analysis – Classification
- Classification Overview
- Logistic Regression
- Naïve Bayes
- Decision Trees
- Ensemble Methods

3. Neural Networks – Image Classification
- Neural Networks
- Convolutional Neural Networks

20

History of
Neural
Networks

Generally layers and layers of linear models and non-linearities
(activation functions).

Have been around for about 50 years

Fell in “disfavor” in the 90s when simpler models were doing
well

In the last decade(s), have had a huge resurgence

Impressive accuracy on several benchmark problems

Have risen in popularity due to huge datasets, GPUs, and
improvements to

21

Popular
Neural
Network
Architectures:
CNNs

Convolutional Neural Networks (CNNs) are commonly used in
Computer Vision. We’ll learn about these on Wed!

22

Popular
Neural
Network
Architectures:
RNNs

23

Recurrent Neural Networks(RNNs) are commonly used in
Natural Language Processing, where the model must
remember context from earlier in the text.

Popular
Neural
Network
Architectures:
GANs

Train two networks together:
- Generator Network: generate fake images
- Discriminator Network: given a real image and a fake

image, determine which is fake

24

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

25

Neural
Network
Details

26

XOR This is a 2-layer neural network

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2
= 𝑔(−0.5 + 𝑥 1 − 𝑥 2)

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2
= 𝑔(−0.5 − 𝑥 1 + 𝑥 2)

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2
= 𝑔(−0.5 + 𝑣 1 + 𝑣 2)

27

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

sli.do #cs416

Think
Compute the output for input (0, 1). There is a sign activation
function on the hidden layers and output layer.

28

2 mins 2

1

-1

2

3

1

-2

2

3

sli.do #cs416

Group
Compute the output for input (0, 1). There is a sign activation
function on the hidden layers and output layer.

29

2 mins 2

1

-1

2

3

1

-2

2

3

Activation
Function

Before, we were using the sign activation function.

This is not generally used in practice.
- Not differentiable
- No notion of confidence

What if we use the logistic function instead?

30

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd g =
1

1 + e�Score(x)

dX

j=0

wjx[j]

Activation
Functions

31

Classification
or
Regression

You can use neural networks for classification and regression!

Regression

The output layer will generally have one node that is the output
(outputs a single number). Don’t apply activation to the last layer.

Classification

The output layer will have one node per class. Usually take the
node with the highest score as the prediction for an example. Can
also use the logistic function (softmax) to turn scores into
probabilities!

32

Overfitting
NNs

Are NNs likely to overfit? YES.

Consequence of being able to fit any function!

How to avoid overfitting?

Get more training data

Few hidden nodes / better architecture
- Rule of thumb: 3-layer NNs outperform 2-layer NNs,

but going deeper only helps if you are very careful
(different story next time with convolutional neural
networks)

Regularization
- Dropout

Early stopping

33

Brain BreakBrain BreakBrain Break

34

Application
to Computer
Vision

35

Image
Features

Features in computer vision are local detectors

Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)
36

Face!

Eye

Eye

Nose

Mouth

The Past A popular approach to computer vision was to make hand-crafted
features for object detection

Relies on coming up with these features by hand (yuck!)

37

Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created
features

NNs to the
Rescue

Neural Networks implicitly find these low level features for us!

Each layer learns more and more complex features

38

Layer 1 Layer 2 Layer 3 Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

Training
Neural
Networks

39

Learning
Coefficients

So the idea of neural networks might make sense, but how do we
actually go about learning the coefficients in the layers?

First we need to define a quality metric or cost function

For regression, generally use MSE or RMSE

For classification, generally use something call the Cross
Entropy loss.

Can we use gradient descent here? Actually yes!

How do we take the derivative of a network?

Are there convergence guarantees?

40

Backpropagation What does gradient descent do in general? Have the model make
predictions and update the model in a special way such that the
new weights have lower error.

To do gradient descent with neural networks, we generally use
backpropagation.

1. Do a forward pass of the data through the network to get
predictions

2. Compare predictions to true values

3. Backpropagate errors so the weights make better predictions

41

Training a
NN

It’s pretty expensive to do this update for the entire dataset at
once, so it’s common to break it up into small batches to process
individually.

However, processing each batch only once isn’t enough. You
generally have to repeatedly update the model parameters. We
call an iteration that goes over every batch once an epoch.

42

for i in range(num_epochs):
for batch in batches(training_data):
preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare
model.backprop(diffs) # Backpropagation

NN
Convergence

In general, loss functions with neural networks are not convex.

This means the backprop algorithm for gradient descent will only
converge to a local optima.

This means that how you initialize the weights is really important
and can impact the final result.

How should you initialize weights?

Usually people do random initialization

People also use adaptive ways of changing the learning rate to
reduce the empirical likelihood of getting stuck in local minima.

43

¯_(ツ)_/¯

sli.do #cs416

Group
Consider the below neural network, used for regression
(hence, no activation on the last layer).

The input, prediction, and actual label are shown.

To move the prediction slightly closer to the label, would you
(increase / decrease) 𝑤#?

44

1 mins

Input

1

3

-7

Prediction

-5.5

Label

1

Backpropogation
Intuition on
Multiple Layers

45

b1

b2

bd

Hyper-
parameter
Tuning

46

Training NN Neural Networks have MANY hyperparameters

How many hidden layers and hidden neurons?

What activation function?

What is the learning rate for gradient descent?

What is the batch size?

How many epochs to train?

And much much more!

How do you decide these values should be?

The most frustrating thing is that we don’t have a great grasp on
how these things impact performance, so you generally have to
try them all.

47

¯_(ツ)_/¯

Hyperparameter
Optimization

48

Hyperparameter
Optimization

49

Hyperparameter
Optimization

50

Hyperparameter
Optimization

Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

51

Tips on
Hyperparameter
Optimization

In general, hyperparameter optimization is a non-convex
optimization problem where we know very little about how the
function behaves.

Your time is valuable and compute time is cheap. Write your code
to be modular so you can use compute time to try a range of
values.

Tools for different purposes

Very few evaluations: use random search (and pray)

Few evaluations and long-run computations: See last slide

Moderate number of evaluations: Bayesian optimization

Many evaluations possible: Use random search. Why
overthink it?

52

Recap Theme: Details of neural networks and how to train them

Ideas:

Perceptron (Single-Layer Neural Network)

Neural Networks

Activation functions

Neural Networks and Overfitting

Backpropagation idea

NN Hyperparameters

Hyperparameter optimization

NN Convergence guarantees

53

