
CSE/STAT 416
Neural Networks
Pre-Lecture Videos

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

July 17 , 2024



Deep 
Learning

A lot of the buzz about ML recently has come from recent 
advancements in deep learning. 

When people talk about “deep learning” they are generally 
talking about a class of models called neural networks that are a 
loose approximation of how our brains work. 
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Recall: 
Linear 
Classifier

Remember the linear classifier based on score
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Perceptron
Graphical representation of this same classifier

This is called a perceptron 4
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XOR The perceptron can learn most boolean functions, but XOR 
always has to ruin the fun.

This data is not linearly separable, therefore can’t be learned 
with the perceptron
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Multi-Layer 
Perceptron 
(Neural 
Network)

Idea: Combine these perceptrons in layers to learn more complex 
functions.
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Neural 
Network 
Diagram 
Simplified

§ Since the inputs are the same, typically we combine them in 
the diagram, with multiple arrows coming out.

§ We don’t explicitly show the sum and activation function –
that is implicitly a part of each node.
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Neural 
Network 
Diagram 
Simplified 
Further

§ Oftentimes, the bias is not explicitly shown as another input, 
and instead written on top of a node.

§ You will see both types of diagrams in this course.

8

b1

b2

bd



XOR
Notice that we can represent 

𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥[2] 𝑂𝑅 (! 𝑥 1 𝐴𝑁𝐷 𝑥 2 )
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XOR This is a 2-layer neural network 

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2
= 𝑔(−0.5 + 𝑥 1 − 𝑥 2 )

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2
= 𝑔(−0.5 − 𝑥 1 + 𝑥 2 )

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2
= 𝑔(−0.5 + 𝑣 1 + 𝑣 2 )
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Neural 
Network

Two layer neural network (alt. one hidden-layer neural network)

Single
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Power of 2-
layer NN

A surprising fact is that a 2-layer network can represent any 
function, if we allow enough nodes in hidden layer.

For this example, consider regression function with one input.

See more here: 
http://neuralnetworksanddeeplearning.com/chap4.html
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Aside: 
Missing Data
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Missing Data: 
Idea 1
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Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan 
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 1: Remove rows (datapoints) with missing values.



Missing Data: 
Idea 2
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Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan 
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 2: Remove columns (features) with missing values.



Missing Data: 
Idea 3
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Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan 
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 3: Treat missing values as a separate value of the feature (only 
Decision Trees)



Missing Data: 
Idea 4
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Credit Term Income Prediction

excellent 3 yrs $100K

fair 5 yrs $20K

poor 3 yrs

Test Set

Credit Term Income Loan 
Safety

fair 5 yrs $100K Safe

excellent 3 yrs Risky

poor 5 yrs $75K Risky

Train Set

§ Idea 4: Replace missing values with a reasonable statistic (Imputation)

(Most 
Commonly 
Used!)



Introduction 
to Neural 
Networks
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Roadmap 
So Far

1. Housing Prices - Regression 
- Regression Model
- Assessing Performance
- Ridge Regression
- LASSO 

2. Sentiment Analysis – Classification
- Classification Overview
- Logistic Regression
- Naïve Bayes
- Decision Trees
- Ensemble Methods

3. Neural Networks – Image Classification
- Neural Networks
- Convolutional Neural Networks
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History of 
Neural 
Networks

Generally layers and layers of linear models and non-linearities 
(activation functions).

Have been around for about 50 years

Fell in “disfavor” in the 90s when simpler models were doing 
well

In the last decade(s), have had a huge resurgence 

Impressive accuracy on several benchmark problems

Have risen in popularity due to huge datasets, GPUs, and 
improvements to 
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Popular 
Neural 
Network 
Architectures: 
CNNs

Convolutional Neural Networks (CNNs) are commonly used in 
Computer Vision. We’ll learn about these on Wed!
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Popular 
Neural 
Network 
Architectures: 
RNNs
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Recurrent Neural Networks(RNNs) are commonly used in 
Natural Language Processing, where the model must 
remember context from earlier in the text.



Popular 
Neural 
Network 
Architectures: 
GANs

Train two networks together:
- Generator Network: generate fake images
- Discriminator Network: given a real image and a fake 

image, determine which is fake
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https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Neural 
Network 
Details
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XOR This is a 2-layer neural network 

𝑦 = 𝑥 1 𝑋𝑂𝑅 𝑥 2 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2 𝑂𝑅 ! 𝑥 1 𝐴𝑁𝐷 𝑥 2

𝑣 1 = 𝑥 1 𝐴𝑁𝐷 ! 𝑥 2
= 𝑔(−0.5 + 𝑥 1 − 𝑥 2 )

𝑣 2 = ! 𝑥 1 𝐴𝑁𝐷 𝑥 2
= 𝑔(−0.5 − 𝑥 1 + 𝑥 2 )

𝑦 = 𝑣 1 𝑂𝑅 𝑣 2
= 𝑔(−0.5 + 𝑣 1 + 𝑣 2 )
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sli.do #cs416

Think
Compute the output for input (0, 1). There is a sign activation 
function on the hidden layers and output layer.
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sli.do #cs416

Group
Compute the output for input (0, 1). There is a sign activation 
function on the hidden layers and output layer.
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Activation 
Function

Before, we were using the sign activation function.

This is not generally used in practice. 
- Not differentiable 
- No notion of confidence

What if we use the logistic function instead?
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Activation 
Functions

31



Classification 
or 
Regression

You can use neural networks for classification and regression! 

Regression

The output layer will generally have one node that is the output 
(outputs a single number). Don’t apply activation to the last layer.

Classification

The output layer will have one node per class. Usually take the 
node with the highest score as the prediction for an example. Can 
also use the logistic function (softmax) to turn scores into 
probabilities! 
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Overfitting 
NNs

Are NNs likely to overfit? YES. 

Consequence of being able to fit any function! 

How to avoid overfitting?

Get more training data

Few hidden nodes / better architecture 
- Rule of thumb: 3-layer NNs outperform 2-layer NNs, 

but going deeper only helps if you are very careful 
(different story next time with convolutional neural 
networks)

Regularization
- Dropout 

Early stopping
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Brain BreakBrain BreakBrain Break
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Application 
to Computer 
Vision
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Image 
Features

Features in computer vision are local detectors 

Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)
36
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The Past A popular approach to computer vision was to make hand-crafted 
features for object detection

Relies on coming up with these features by hand (yuck!)
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Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created 
features



NNs to the 
Rescue

Neural Networks implicitly find these low level features for us!

Each layer learns more and more complex features
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Layer 1 Layer 2 Layer 3 Prediction

Example 
detectors 
learned

Example 
interest points 
detected

[Zeiler & Fergus ‘13]



Training 
Neural 
Networks
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Learning 
Coefficients

So the idea of neural networks might make sense, but how do we 
actually go about learning the coefficients in the layers?

First we need to define a quality metric or cost function

For regression, generally use MSE or RMSE

For classification, generally use something call the Cross 
Entropy loss. 

Can we use gradient descent here? Actually yes!

How do we take the derivative of a network? 

Are there convergence guarantees? 
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Backpropagation What does gradient descent do in general? Have the model make 
predictions and update the model in a special way such that the 
new weights have lower error. 

To do gradient descent with neural networks, we generally use 
backpropagation.

1. Do a forward pass of the data through the network to get 
predictions

2. Compare predictions to true values

3. Backpropagate errors so the weights make better predictions
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Training a 
NN

It’s pretty expensive to do this update for the entire dataset at 
once, so it’s common to break it up into small batches to process 
individually. 

However, processing each batch only once isn’t enough. You 
generally have to repeatedly update the model parameters. We 
call an iteration that goes over every batch once an epoch.
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for i in range(num_epochs):
for batch in batches(training_data):
preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare
model.backprop(diffs) # Backpropagation



NN 
Convergence

In general, loss functions with neural networks are not convex. 

This means the backprop algorithm for gradient descent will only 
converge to a local optima. 

This means that how you initialize the weights is really important 
and can impact the final result. 

How should you initialize weights? 

Usually people do random initialization

People also use adaptive ways of changing the learning rate to 
reduce the empirical likelihood of getting stuck in local minima.
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sli.do #cs416

Group
Consider the below neural network, used for regression 
(hence, no activation on the last layer).

The input, prediction, and actual label are shown. 

To move the prediction slightly closer to the label, would you 
(increase / decrease) 𝑤#?
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Backpropogation
Intuition on 
Multiple Layers
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Hyper-
parameter 
Tuning
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Training NN Neural Networks have MANY hyperparameters

How many hidden layers and hidden neurons?

What activation function? 

What is the learning rate for gradient descent?

What is the batch size?

How many epochs to train?

And much much more! 

How do you decide these values should be?

The most frustrating thing is that we don’t have a great grasp on 
how these things impact performance, so you generally have to 
try them all. 
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Hyperparameter 
Optimization
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Hyperparameter 
Optimization
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Hyperparameter 
Optimization
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Hyperparameter 
Optimization

Recent work attempts to speed up hyperparameter evaluation by 
stopping poor performing settings before they are fully trained.
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Tips on 
Hyperparameter 
Optimization

In general, hyperparameter optimization is a non-convex 
optimization problem where we know very little about how the 
function behaves. 

Your time is valuable and compute time is cheap. Write your code 
to be modular so you can use compute time to try a range of 
values.

Tools for different purposes

Very few evaluations: use random search (and pray) 

Few evaluations and long-run computations: See last slide

Moderate number of evaluations: Bayesian optimization

Many evaluations possible: Use random search. Why 
overthink it?
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Recap Theme: Details of neural networks and how to train them

Ideas:

Perceptron (Single-Layer Neural Network)

Neural Networks

Activation functions

Neural Networks and Overfitting

Backpropagation idea

NN Hyperparameters

Hyperparameter optimization

NN Convergence guarantees
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