
CSE/STAT 416
Ensemble Methods

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

April 26 , 2024

Decision
Trees Recap

Video 1

2

Roadmap
So Far

1. Housing Prices - Regression
- Regression Model
- Assessing Performance
- Ridge Regression
- LASSO

2. Sentiment Analysis – Classification
- Classification Overview
- Logistic Regression
- Naïve Bayes
- Decision Trees
- Ensemble Methods

3

4

ML Pipeline

4

Training
Data

Pre-
Processin

g

ML
mode

l

Qualit
y

metric

Optimizatio
n

algorithm

y

x ŷ

⌃f

Decision
Trees

• Branch/Internal node: splits into possible values of a feature

• Leaf node: final decision (the class value)

Start

Credit?

Safe

excellent

Income?

poor

Term?

Ris
ky

Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years

Best
threshold?

Similar to our simple, threshold model when discussing Fairness!

Safe
RiskyIncome

$120K$10K

Predicting
probabilities

Root
18 12

excellent
9 2

fair
6 9

poor
3 1

Loan status:
Safe Risky

Credit?

Safe Risky

P(y = Safe | x)

 = 3 =
0.75
 3 + 1

Safe

Probabilities
(Depth 1)

Depth 2

Compare
Decision
Boundaries

10

Overfitting ▪ Deep decision trees are prone to overfitting
- Decision boundaries are interpretable but not stable
- Small change in the dataset leads to big difference in

the outcome

▪ Overcoming Overfitting:
- Early stopping

- Fixed length depth
- Stop if error does not considerably decrease

- Pruning
- Grow full length trees
- Prune nodes to balance a complexity penalty

In Practice ▪ Trees can be used for classification or regression (CART)
- Classification: Predict majority class for root node
- Regression: Predict average label for root node

▪ In practice, we don’t minimize classification error but instead
some more complex metric to measure quality of split such as
Gini Impurity or Information Gain (not covered in 416)

▪ Can also be used to predict probabilities
12

Predicting
probabilities

Root
18 12

excellent
9 2

fair
6 9

poor
3 1

Loan status:
Safe Risky

Credit?

Safe Risky

P(y = Safe | x)

 = 3 = 0.75
 3 + 1

Safe

Early
Stopping

▪ Stopping Rules:
- 1) All data in the subset have the same label
- 2) No more features left to split

▪ Early Stopping Rule
- Only grow up to a max depth hyperparameter (choose

via validation)
- Don’t split if there is not a sufficient decrease in error
- Require a minimum number of examples in a leaf node

- Will use this on HW

14

Decision Tree
Overview

▪ Super Simple: Interpretable model that is understandable by
people without too much ML experience.

▪ Very Efficient: It actually isn’t too hard to train a tree

▪ Depth Matters
- Too small, it is too weak to learn the function (high bias)
- Too tall, it is likely to overfit to the data (high variance)
- Even by choosing depth appropriately, trees tend to not

be the best performing models

15

Random
Forests

Video 2

16

17

ML Pipeline

17

Training
Data

Pre-
Processin

g

ML
mode

l

Qualit
y

metric

Optimizatio
n

algorithm

y

x ŷ

⌃f

Ensemble
Method

Instead of switching to a brand new type of model that is more
powerful than trees, what if we instead tried to make the tree into
a more powerful model.

What if we could combine many weaker models in such a way to
make a more powerful model?

A model ensemble is a collection of (generally weak) models that
are combined in such a way to create a more powerful model.

There are two common ways this is done with trees

▪ Random Forest (Bagging)

▪ AdaBoost (Boosting)

18

Overview ▪

19

Training
Trees

If I just have one dataset, how could I learn more than one tree?

Solve this with bootstrapping! Can create many similar datasets
by randomly sampling with replacement.

Technically, you also randomly select features too! 20

Details The Random Forest model is a specific type of ensemble model
that uses bagging (bootstrapped aggregation).

When training the trees on the bootstrapped samples, we actually
want to use very deep trees that overfit!

▪ That sounds bad at first, but we are trying to take advantage
of what it means to have a high variance model (low bias).

▪ Remember that high variance models have low bias because if
you “average out” over all the models you could learn, they
will not have bias.

▪ That is exactly what we are doing here! If we average over a
bunch of high variance (overfit) models, to get an ensemble
that has low bias and lower variance (if we add more trees)!

21

Random
Forest
Algorithm

▪

22

Application Microsoft used Random Forests in their Kinect system to identify
the “pose” of a person from the depth camera.

23

Random
Forest
Overview

▪ Use overfitting to our advantage! Averaging overfit models
can help make a strong model.

▪ Versatile: Works pretty well in a lot of cases and can serve
many different purposes.

- Classification, regression, clustering, feature importance

▪ Low Maintenance: Tends to require less hyper-parameter
tuning. Good “out of the box” model.

- More trees is always better here (but takes longer).
- Some other hyperparameters, but they tend to have a

small affect on performance.

▪ Efficient: Trees can be learned in parallel!

24

Brain BreakBrain BreakBrain Break

25

Types of
Features

▪ Numeric: data described by a number (quantitative)
- Discrete: cannot be subdivided

- e.g., number of bedrooms
- Continuous: can be subdivided

- e.g., area of the house
- Tricky Case: house price? (don’t divide further than penny)

- Rule of Thumb: if the discreteness is caused by units of
measurement, as opposed to the quantity being measured,
treat it as continuous!

▪ Categorical: data described by a category (qualitative)
- Ordinal: has an order

e.g., school quality (good / okay / poor)
e.g., survey response (agree / neutral / disagree)

- Nominal: doesn’t have an order
- e.g., nearest school type (public / private / charter)

Data
Encodings

▪ All ML models we’ve learnt so far require input features to be
numbers!

▪ Ordinal: Assign each value to a number:
- e.g., good = 1, okay = 0, poor = -1

▪ Nominal: One-hot encoding, make each value its own binary
feature!

- In section, you saw a one-hot encoding of “County”

27

School House
Price

Public $500K

Private $750K

Charter $600K

Public $700K

School -
Public

School -
Private

School -
Charter

House
Price

1 0 0 $500K

0 1 0 $750K

0 0 1 $600K

1 0 0 $700K

Decision
Trees

• Branch/Internal node: splits into possible values of a feature

• Leaf node: final decision (the class value)

Start

Credit?

Safe

excellent

Income?

poor

Term?

Risky Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years

Pros/Cons
Decision Tree

▪ Pros:
- Easy to interpret
- Handles numeric and categorical variables without preprocessing*

- In theory, scikit-learn still requires preprocessing
- No normalization required as it uses rule-based approach
- Can create non-linear decision boundaries
- Can readily do multi-class classification (unlike Logistic Regression)

▪ Cons:
- Deep decision trees are prone to overfitting
- Only allows axis-parallel decision boundaries

Training
Trees

If I just have one dataset, how could I learn more than one tree?

Solve this with bootstrap sampling! Can create many similar
datasets by randomly sampling with replacement.

Technically, you also randomly select features too! 30

Practical
Details

▪

31

sli.do #cs416

Think

Which of the following graphs do you think shows the training/true
error curves for random forests as you increase # trees (general trend)?

32

1 min

trees

er
ro

r Sou

true

train

trees

er
ro

r Sou
true

train

trees

er
ro

r Sou

true

train

trees

er
ro

r

true

train

Sou

sli.do #cs416

Group

Which of the following graphs do you think shows the training/true
error curves for random forests as you increase # trees (general trend)?

33

2 min

trees

er
ro

r Sou

true

train

trees

er
ro

r Sou
true

train

trees

er
ro

r Sou

true

train

trees

er
ro

r

true

train

Sou

Brain BreakBrain BreakBrain Break

34

AdaBoost
Boosting

35

Background A weak learner is a model that only does slightly better than
random guessing.

Kearns and Valiant (1988, 1989):

 “Can a set of weak learners create a single strong learner?”

Schapire (1990)

 “Yes!”

36

AdaBoost
Overview

▪

37

sli.do #cs416

Group

38

2 min
sli.do #cs416

Income
>= 1000

SAFE

Yes

RISKY

No

Credit
History?

SAFE

Good

RISKY

Bad

Savings
>= 100k

SAFE

3 Years

RISKY

5 Years

Market
Cond.

SAFE

Bad

RISKY

Good

Weight Value

Training
AdaBoost

▪

39

Boosting
(AdaBoost)
vs. Bagging
(Random
Forrest)

40

AdaBoost
Ada Glance

▪

41

 Start with a dataset and train our first model (a decision stump)

For all the things it gets wrong, increase the weight of that
example. For each one that’s right, decrease its weight.

42

Learning w/
Weighted
Data

▪

43

Learning w/
Weighted
Data

We also set leaf node predictions to be the class with larger total
weight, not the class with more instances.

44

Root
 6 3

Loan status:
Safe Risky

poor
1 2

fair
3 1

excellent
2 0

Credit?
Credit y weight

excellent safe 1.2

fair risky 3.0

fair safe 0.5

poor risky 0.9

excellent safe 0.9

fair safe 0.7

poor risky 1.0

poor safe 2.1

fair safe 1.2

sli.do #cs416

Group

Consider the following weighted dataset, what is the weighted
classification error of the optimal decision stump (just one
split)?

We want to use the TumorSize and IsSmoker to predict if a
patient’s tumor is malignant.

45

2 min
TumorSize IsSmoker Malignant Weight

Small No No 0.5

Small Yes Yes 1.2

Large No No 0.3

Large Yes Yes 0.5

Small Yes No 3.3

sli.do #cs416

Group

46

0 min

TumorSize IsSmoker Malignant Weight

Small No No 0.5

Small Yes Yes 1.2

Large No No 0.3

Large Yes Yes 0.5

Small Yes No 3.3

Real Valued
Features

The algorithm is more or less the same, but now we need to
account for weights

47

1 2 1 2 5 1 1000 123

Brain BreakBrain BreakBrain Break

48

AdaBoost
Ada Glance

▪

49

▪

50

 ▪

51

AdaBoost
Ada Glance

▪

52

 ▪

53

AdaBoost
Ada Glance

▪

54

Visualizing
AdaBoost

55

 ▪

56

 ▪

57

 ▪

58

AdaBoost
Ensemble

If we plot what the predictions would be for each point, we get
something that looks like this:

59

sli.do #cs416

Group

▪

60

1 min

(A) (B) (C)

sli.do #cs416

Group

▪

61

1 min

(A) (B) (C)

sli.do #cs416

Group

▪

62

30 sec

(A) (B) (C)

AdaBoost
Example

You have now worked through a complete example of training
AdaBoost!

▪ What about predicting?

63

sli.do #cs416

Think

▪ Consider the following ensemble and weights from the
AdaBoost example we’ve been working through.

▪ Which of the following is the final decision boundary?

64

1 min

(A) (B) (C) (D)

sli.do #cs416

Group

▪ Consider the following ensemble and weights from the
AdaBoost example we’ve been working through.

▪ Which of the following is the final decision boundary?

65

2 min

(A) (B) (C) (D)

66

Brain BreakBrain BreakBrain Break

67

AdaBoost
Overfitting

68

AdaBoost
Ada Glance

▪

69

 Can eventually get 0 training error with a set of weak learners!

This is most likely overfit

70

AdaBoost
Theorem

Technical condition: The weak learner can do at least slightly
better than complete random guessing

71

Compare
Decision Tree

AdaBoost

72

Overfitting?
Boosting tends to be robust to overfitting

But will eventually overfit

73

 ▪

74

Application ▪ Boosting, AdaBoost and other variants like gradient boosting,
are some of the most successful models to date.

▪ They are extremely useful in computer vision
- The standard for face detection

▪ Used by most winners of ML competitions (Kaggle, KDD Cup, …)

▪ Most industry ML systems use a model ensembles
- Some with boosting, some with bagging
- Many times just use 6 different types of models and

hand specify their weights.

75

AdaBoost
Overview

▪ Powerful! One of the most powerful set of models for many
real world datasets.

- Typically does better than random forest with the same
number of trees.

▪ Higher Maintenance: You do have to tune hyper-parameters
- AdaBoost: Number of trees is technically important, but

the model tends to be robust to overfitting in practice.
- Gradient Boosting: MANY hyper-parameters (all

important)

▪ Expensive: Boosting is inherently sequential which means its
slow to learn ensembles with many trees.

- Can be made faster with optimized software like
XGBoost (UW)

76

Recap Theme: Compare two different ways of making ensembles

Ideas:

▪ Describe what an ensemble model is

▪ Explain what a random forest is and why adding trees
improves accuracy.

▪ Formalize how AdaBoost combines weighted votes from
simple classifiers (weak learners) and how those classifiers
are learned.

▪ Compare/contrast bagging and boosting.

▪ Describe the steps of the AdaBoost algorithm.

77

