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Matrix
Completion

Input Data

Want to recommend movies based
on user ratings for movies.

Challenge: Users have rated
relatively few of the entire catalog

Can think of this as a matrix of
users and ratings with missing data!
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Matrix
Factorization
Assumptions

Assume that each item has k (unknown) features.

e.g., k possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item v with feature vector R,, =2 lengiin s

How much is the movie action, romance, sci-fi, ...

eg.. R, =003, 001, 15 ..]
&ction Fomance ¥Ci-f!

We can also describe each user u with a feature vector L,, —2\eng K
How much they like action, romance, sci-fi, ....

Example: L, =[2.3, 0, 0.7 , ..]

Estimate rating for user u and movie v as
Rating(w,v) =L, -R,=23-03 +0-0.014+0.7-1.5+ ..
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Exam P le Suppose we have learned the following user and movie features
using 2 features K= 2=
——
Lw
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Then we can predict what each user would rate each movie
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Goal: Find L,, and R, that when multiplied, achieve predicted
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)
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Unique
Solution?

Is this problem well posed? Unfortunately, there is not a unique

solution ®

For example, assume we had a solution
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Then doubling everything in L and halving everything in R is also
a valid solution. The same is true for all constant multiples.
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1 Questions? Raise hand or sli.do #cs416
ﬂ Listening to:




Final exam will be pen and paper exam in lecture time next
Final Exa m Wednesday (Aug 14, 5PM-6:50 PM)

Cheat Sheet (A4, two sided) is allowed
No calculators are allowed
Carry a water bottle with you

All content till this lecture included




You have n users and m items in your system
Typically, n » m. E.g., Youtube: 2.6B users, 800M videos

Based on the content, we have a way of measuring user preference.
Recommend
This data is put together into a user-item interaction matrix.
er Systems
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Users User-item interactions matrix Items
suscribers rating given by a user to a movie (integer) movies
readers time spent by a reader on an article (float) articles
buyers product clicked or not when suggested (boolean) products

Task: Given a user u; or item v}, predict one or more items to recommend.




Solution O:
Popularity

Simplest Approach: Recommend whatever is popular

Rank by global popularity (i.e., Squid Game)
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User-User Recommendation:

Solution 1: Given a user u;, compute their k nearest neighbors.

Recommend the items that are most popular amongst the
nearest neighbors.

Nearest User
(User-User)

[ positive interactions [ neutral interactions [ regative interactions
Wi
User we want to make a recommendation We can then recommend the most popular
for is represented by its row in the matrix... items among the K nearest neighbours

User-item
lntetr.actlons ... and we search the K nearest neighbours
matrix of this user in the matrix
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Solution 2:
“People Who
Bought This
Also
Bought...”

(ltem-Item)

C\--‘ = Fotal B ugevs who

Item-Item Recommendation:

bow S\r\"'
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Create a co-occurrence matrix C € R™™ (m is the number
of items). C;; = # of users who bought both item i and j.

For item i, predict the top-k items that are bought together.

Sunglasses

Baby Bottle

Diapers
Swim Trunks

Baby Formula
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Normalizing
Co-
Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

o # purchased iand j Ci;
Y #purchasediorj  Cy+Cjj —C;

Sunglasses

Baby Bottle

Diapers




Solution 3:

Feature-
Based

14



R radiaas
What if we know what factors lead users to like an item?

Solution 3:

Idea: Create a feature vector for each item. Learn a regression model!

Feature-

Based Genre Year Director
Action 1994 Quentin Tarantino
Sci-Fi 1977 George Lucas

Define weights on these features for all users (global)
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Fit linear model O
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What if we know what factors lead users to like an item?

Solution 3:

Idea: Create a feature vector for each item. Learn a regression model!

Feature-

Based Genre Year Director
Action 1994 Quentin Tarantino
Sci-Fi 1977 George Lucas

Define weights on these features for all users (global)
Wg € Rd

Fit linear model

o = WER(v) —Zwﬁh (v)

1
We = argmin W ratings 2 WEh(v) — 1,,)2% + Allwgll
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Personalization: Add user-specific features to the feature vector!

O t I*e_m-seecif ‘¢ fectuves wser Specific. Learures
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Year Director Gender | Age
1994 Quentin F 25
Tarantino
1977 George Lucas M 42
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Livnear Mixed Mode\

_ _ Lineav M ived G,Q’\?ec}s
Personalization: Include a user-specified deviation from the global model.

Option B

Tuy = (WG + Wu)Th(v)

Start a new user at w,, = 0, update over time.
OLS on the residuals of the global model

Bayesian Update (start with a probability distribution over
user-specific deviations, update as you get more data)




Solution 3

(Feature-
Based) Pros/
Cons

Pros:

No cold-start issue!

- Evenif a new user/item has no purchase history, you
know features about them.

= Personalizes to the user and item.
= Scalable (only need to store weights per feature)
= Can add arbitrary features (e.g., time of day)
S Codent “Seedca' ¢ Secrwes
Cons:

= Hand-crafting features is very tedious and unscalable ®



Solution 4:
Matrix
Factorization

Can we learn the
features of items?

20



Matrix
Factorization
Assumptions

Assume that each item has k (unknown) features.

e.g., k possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item v with feature vector R, =2 lengil~ K

How much is the movie action, romance, sci-fi, ...

eg.. R, =003, 001, 15 ..]
&ction Fomance ¥Ci-f!

We can also describe each user u with a feature vector L,, —2\eng K
How much they like action, romance, sci-fi, ....

Example: L, =[2.3, 0, 0.7 , ..]

Estimate rating for user u and movie v as
Rating(w,v) =L, -R,=23-03 +0-0.014+0.7-1.5+ ..
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Matrix
Factorization
Learning

Goal: Find L,, and R,, that when multiplied, achieve predicted
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)
M
/i 2
L,R = argmin . Z (Ly R, — 1)
LR #ratings « =< ech)
UV Ty *? t; predicred, 4‘«\-.-.5

vyo: g

This is the MSE, but we are learning both “weights” (how much
the user likes each feature) and item features!
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Why s [t
Called Matrix
Factorization
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Also called Matrix Completion, because this technique can be used to fill
in missing values of a matrix




Suppose we have learned the following user and movie features
using 2 features (K =)

| UserID___| Feature |

1 (2,0 1 (3, 1)
2 (1,1) 2 (1,2)
3 (0,1) 3 (2,1)
4 (2,1)

What is the predicted rating user 1 will have of movie 27

What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?




PR Wy R R =1l

v,

Suppose we have learned the following user and movie features
using 2 features

| UserID___| Feature |

¢, 1 (2,0) 1 (3,1)
2 (1,1) R 2 (1,2)
3 (0,1) 3 (2,1)
4 (2,1)

What is the predicted rating user 1 will have of movie 27

What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?




Exam P le Suppose we have learned the following user and movie features
using 2 features

| UserID____| Feature |
120 e
2 (1,1) 2 (1,2
3 (0,1) 3 (2, 1)

{4 @)

Then we can predict what each user would rate each movie
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Coordinate
Descent

27



Remember, our quality metric is

. 1 g
L,R = argmin Z L, R, —
g : # ratings ( uv)

UV Ty *?

Gradient descent is not used in practice to optimize this, since itis
much easier to implement coordinate descent (i.e., Alternating

Least Squares) to find L and R



Coordinate Goal: Minimize some function g(w) = g(wg, wy, ..., wp)
Descent

Instead of finding optima for all coordinates, do it for one
coordinate at a time!

Initialize w = 0 (or smartly)
while not converged:
pick a coordinate j

w;= argming(Wy , ..., Wj_1, W, Wji1,... , Wp)
w

To pick coordinate, can do round robin or
pick at random each time.

Guaranteed to find an optimal solution
under some constraints

Son & convexr ¥y, Smoath _




Coordinate A 2
Descent for LR = argmin o ings Z ¢7(Lu "Ry — 1)
. W, VT #
Matrix
FaCtOrlzatlon Fix movie factors R and optimize for L _S‘.;,,,q
1 2
L= i Z Ly R, —
arng N ratings (Lo - Ry = Ti)
-— UV F?
First key insight: users are independent!
Siaed
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Coordinate
Descent for
Matrix
Factorization

Q\«/)
VAR

- 1
Ly, z (Ly - Ry — 1)

= argmin -
gL # ratings foru
u Vil 2?7

Second key insight: this looks a lot like linear regression!

1 n
W = argmin— - h(x;) — y;)?
gmin= > @ hx) 3

w

Takeaway: For a fixed R , we can learn L using linear regression,
separately per user.

Conversely, for a fixed L, we can learn R using linear regression,
separately per movie.



Overall
Algorithm

Want to optimize

PN 1
L,R=arm1n—z L, R, —1y)?
2 # ratings ( uv)

UV Ty p#*?

Fix movie factors R, and optimize for user factors separately
Step 1: Independent least squares for each user

L,= argmln Z(L ‘R, —1,)? T >\\\L— \\

# ratings for u
9 f VEV,

Fix user factors, and optimize for movie factors separately

Step 2: Independent least squares for each movie

Ry = argmln# ratings for v z (Ly Ry —1u)® TN \\‘L n

ueu,

Repeatedly do these steps until convergence (to local optima)

System might be underdetermined: Use regularization



Think &

1.5 minutes

Consider we had the ratings matrix

Movie 1 | Movie 2
User1l | 4 ?
User 2 | ?7 2

During one step of optimization, user and movie factors are

User Factors
User 1 1,2, 1
User 2 1,1,0

Two questions:

Movie Factors

Movie 1

2,1,0

Movie 2

0,0, 2

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user
factors. Which factors would change?

User 1
User 2
User 1 and?2

None




Movie 1 | Movie 2
User1l | 4 K |?

Consider we had the ratings matrix

User 2 | 7 2 O
0 g During one step of optimization, user and movie factors are
Group &%
User Factors Movie Factors
User 1 1,2, 1 Movie 1 2,1,0
3 minutes User 2 1,1,0 Movie 2 0,0, 2
A
T =0 ) 'Ell Y O?
Two questions: - VL l-ir O

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user

factors. Which factors would change?
- {op1
& -\ ,0)-L 0.l

User 1 MSE -

User 2 . =)-0+\-0+0-L
— -\t '

User 1 and 2 7_(("‘ “) '*(’L‘OSL) —10O !

None X




4

€ ) Brain Break




What Has Matrix Factorization is a very versatile techniquel!

Matrix Learns a latent space of topics that are most predictive of user
Factorization
Learnt?

preferences.

~

Learns the “topics” that exist in movie v: R,
Learns the “topic preferences” for user u: L,

Predict how much a user u will like a movie v
. Rating(u,v) =L, - R,
lV\C,\u‘A:v\S Sovr wovies gt - e
Avain ‘cv-% AG&*‘OSC*

F- R
Rating =E .Ez L




Ap P lications: Recommendations: (Semi-Supervised)
Recommender Use matrix factorization to predict user ratings on movies the user

Systems

hasn’'t watched

Recommend movies with highest predicted rating

Gerevede (redickon
even Lor ¢ 9




Topic Modeling: (Unsupervised)

Treat the TF-IDF matrix as the user-item matrix

Applications: Documents are "users”
TOpiC Words are “items”
Modeling

L tells us which topics are present in each document (+wee r
R tells us what words each topic is composed of
Oftentimes, the topics are interpretable!

HW?7 Programming: Tweet Topic Modeling
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Solution 4 Pros:
(M atrix Personalizes to item and user!
FactOrizati 0] n) Learns latent features that are most predictive of user ratings.

Pros / Cons

Cons:

=  Cold-Start Problem

- What do you do about new users or items, with no
data?




Common
Issues with
Recommender
Systems

(and some solutions)

40



Recommender systems
|

.

Content based methods

Define a model for user-item
interactions where users and/or
items representations are given
(explicit features).

-gcdurc - BKS@A

‘

Collaborative filtering methods

. .

Model based Memory based

Define a model for user-item Define no model for user-item
interactions where users interactions and rely on
and items representations similarities between users
have to be learned from or items in terms of
interactions matrix. observed interactions.

matr i fuckor iation jFeva — (+ewa

.

Hybrid methods

Mix content based and
collaborative filtering
approaches.



Think &

1 min

You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The

system works very well on existing users and songs, but does
not work on new users or new songs.

How can you augment, extend, and/or modify your
recommender system to handle new songs/users?



You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The

system works very well on existing users and songs, but does
not work on new users or new songs.

How can you augment, extend, and/or modify your
recommender system to handle new songs/users?



Comparing
Recommender
Systems

N users 22 wAa

rewa S

Efficiency | Efficiency | Addresses | Personalizes | Discovers
(Space, (Time, Cold- to User? Latent
Deploy) Deploy) Start? Features?
User-User | * ° °C ° - © - -
A\ m ~ v/ M
ltem-Item ° . oo ° o o . ° -
o o ro ~ N
Feature- | = - e - = e . e
Based -/ —/ / ) \
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Factorization S -/ N % —/
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Featurized Feature-based approach
Matrix Feature representation of user and movie fixed

Factorizati on Can address cold start problem

Matrix factorization approach
Suffers from cold start problem

User & Movie features are learned from data

A unified model

?"W = 'F[liu.ﬁv J (QC:"'C)UJT(“{“/;))

— b —_——
NF F3
L o some orblvary metnd do combine el (S




Cold-Start
Problem

When a new user comes in, we don’t know what items they like!
When a new item comes into our system, we don’t know who
likes it! This is called the cold start problem.

Addressing the cold-start problem (for new users):
Give random predictions to a new user.
Give the globally popular recommendations to a new user.
Require users to rate items before using the service.

Use a feature-based model (or a hybrid between feature-
based and matrix factorization) for new users.



_I_ K Top-k recommendations might be very redundant
(_)p_ HEIEEE Someone who likes Rocky | also will likely enjoy Rocky I, Rocky
Diverse

lll, Rocky IV, Rocky V
Recommend-

at| ons Diverse Recommendations

Users are multi-faceted & we want to hedge our bets

Maybe recommend: Rocky II, Always Sunny in Philadelphia,
Robin Hood

Solution: Maximal Marginal Relevance
Pick recommendations one-at-a-time.

Select the item that the user is most likely to like and that is
most dissimilar from existing recommendations.

Hyperparameter A to trade-off between those objectives.




Feedback
Loops / Echo
Chambers

content users
watch

influences influences

their
recommendations

Users always get recommended similar content and are unable to
discover new content they might like.

Exploration-Exploitation Dilemma
Common problem in “online learning” settings

Pure Exploration: show users random content
Users can discover new interests, but will likely be unsatisfied

Pure Exploitation: show users content they're likely to like
Users can’t discover new interests.

Solution: Multi-Armed Bandit Algorithms (beyond the scope of 416)



Radicalization
Pathways

In the real-world, recommender systems guide us along a path
through the content in a service.

If watch video 1, recommend video 2

If watch video 2, recommend video 3

A 2019 study found that YouTube’s algorithms lead users to
more and more radical content.

“Intellectual Dark Web” = Alt-Lite = Alt-Right

See more: iSchool 2021 Spring Lecture on Algorithmic Bias &
Governance

Youtube’s response has been whack-a-mole. (Remove the
content, manually tweak the recommendations for that topic)


https://arxiv.org/abs/1908.08313
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://www.themantle.com/arts-and-culture/why-youtubes-decision-remove-far-right-content-not-enough

2021 experiment on time-to-seeing radical alt-right content

TikTok

d" TikTok
@tofology

i

Source: https://www.tiktok.com/@tofology/video/7016081760643534085?lang=en


https://www.mediamatters.org/tiktok/tiktoks-algorithm-leads-users-transphobic-videos-far-right-rabbit-holes

Evaluating
Recommender
Systems

51



MS E / = |tis possible to evaluate recommender systems using existing

Accuracy?

metrics we have learnt:
- MSE (if predicting ratings)
- Accuracy (if predicting like/dislike, or click/ignore)

= However, we don't really care about accurately predicting
what a user won't like.

= Rather, we care about finding the few items they will like.

Instead, we focus on the following metrics:
How many of our recommendations did the user like? P{ec"s\ 0

How many of the items that the user liked did we  Recall
recommend?

Sound familiar?




Precision -
Recall

Precision and recall for recommender systems
# liked & shown

# shown
#liked & shown

#liked

precision =

recall =

What happens as we vary the number of recommendations we make?

Best Recommender System:
Top-1: high precision, low recall

Top-k (large k): high precision, high recall

Average Recommender System:
Top-1: average precision, low recall

Top-k (large k): low precision, high recall



Precision -
Recall
Curves

precision ;
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Comparing
Recommender
Systems

In general, it depends

What is true always is that for a given precision, we want
recall to be as large as possible (and vice versa)

What target precision/recall depends on your application
One metric: area under the curve (AUC)
-

Another metric: Set desired recall and maximize precision
(precision at k)

precision

recall



Now you know how to:

Describe the input (observations, number of “topics”) and
output (“topic” vectors, predicted values) of a matrix
factorization model

Implement a coordinate descent algorithm for optimizing the
matrix factorization objective presented

Compare different approaches to recommender systems

Describe the cold-start problem and ways to handle it (e.g.,
incorporating features)

Analyze performance of various recommender systems in
terms of precision and recall

Use AUC or precision-at-k to select amongst candidate
algorithms
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