
CSE/STAT 416
Recommender Systems:
Matrix Factorization
Pre-Class Videos

Tanmay Shah
University of Washington
Aug 7, 2024

Matrix
Completion

Want to recommend movies based
on user ratings for movies.

Challenge: Users have rated
relatively few of the entire catalog

Can think of this as a matrix of
users and ratings with missing data!

2

User Movie Rating

Input Data

Matrix
Factorization
Assumptions

Assume that each item has 𝑘 (unknown) features.

▪ e.g., 𝑘 possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, sci-fi, …

▪ e.g., 𝑹𝒗 = 0.3, 0.01, 1.5, …

We can also describe each user 𝒖 with a feature vector 𝑳𝒖
▪ How much they like action, romance, sci-fi, ….

▪ Example: 𝐿𝑢 = [2.3, 0 , 0.7 , …]

Estimate rating for user 𝒖 and movie 𝒗 as
෣𝑅𝑎𝑡𝑖𝑛𝑔 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 + …

3

Example Suppose we have learned the following user and movie features
using 2 features

Then we can predict what each user would rate each movie

4

Matrix
Factorization

Goal: Find 𝐿𝑢 and 𝑅𝑣 that when multiplied, achieve predicted
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

5

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Unique
Solution?

Is this problem well posed? Unfortunately, there is not a unique
solution 

For example, assume we had a solution

Then doubling everything in 𝐿 and halving everything in 𝑅 is also
a valid solution. The same is true for all constant multiples.

6

CSE/STAT 416
Recommender Systems:
Matrix Factorization

Hunter Schafer
University of Washington
May 24, 2023

Questions? Raise hand or sli.do #cs416
Listening to:

Recommend
er Systems
Setup

▪ You have 𝑛 users and 𝑚 items in your system
- Typically, 𝑛 ≫ 𝑚. E.g., Youtube: 2.6B users, 800M videos

▪ Based on the content, we have a way of measuring user preference.

▪ This data is put together into a user-item interaction matrix.

▪ Task: Given a user 𝑢𝑖 or item 𝑣𝑗, predict one or more items to recommend.

8

Solution 0:
Popularity

Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e., Squid Game)

9

Sum
Across
Users

Recommend
Top-K

Solution 1:
Nearest User
(User-User)

User-User Recommendation:

▪ Given a user 𝑢𝑖, compute their 𝑘 nearest neighbors.

▪ Recommend the items that are most popular amongst the
nearest neighbors.

10

Solution 2:
“People Who
Bought This
Also
Bought…”

Item-Item

11

Solution 2:
“People Who
Bought This
Also
Bought…”
(Item-Item)

Item-Item Recommendation:

▪ Create a co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number
of items). 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗.

▪ For item 𝑖, predict the top-k items that are bought together.

12

Normalizing
Co-Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

𝑆𝑖𝑗 =
purchased 𝑖 and 𝑗

purchased 𝑖 or 𝑗
=

𝐶𝑖𝑗
𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 𝐶𝑖𝑗

13

Incorporating
Purchase
History

What if I know the user 𝑢 has bought a baby bottle and formula?

Idea: Take the average similarity between items they have bought

𝑆𝑐𝑜𝑟𝑒 𝑢, 𝑑𝑖𝑎𝑝𝑒𝑟𝑠 =
𝑆𝑑𝑖𝑎𝑝𝑒𝑟𝑠,𝑏𝑎𝑏𝑦 𝑏𝑜𝑡𝑡𝑙𝑒 + 𝑆𝑑𝑖𝑎𝑝𝑒𝑟𝑠,𝑏𝑎𝑏𝑦 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

2

Could also weight them differently based on recency of purchase!

Then all we need to do is find the item with the highest average
score!

14

pollev.com/cs416

ThinkThinkThink

▪ What do you see as pros / cons of the item-item approach to
recommendations?

15

2 min

Solution 2
(Item-Item)
Pros / Cons

Pros:

▪ Personalizes to item (incorporating purchase history also
personalizes to the user)

Cons:

▪ Can still suffer from feedback loops
- (As can all recommender systems – but in some cases it’s

worse than others)

▪ Scalability (must store entire item-item matrix)

▪ Cold-Start Problem
- What do you do about new items, with no data?

16

Solution 3:
Feature-
Based

17

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

18

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

Ƹ𝑟𝑢𝑣 = 𝑤𝐺
𝑇ℎ 𝑣 =෍

𝑖

𝑤𝐺,𝑖 ℎ𝑖(𝑣)

ෝ𝑤𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝑤𝐺
𝑇ℎ 𝑣 − 𝑟𝑢𝑣

2 + 𝜆 𝑤𝐺

19

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Personalization:
Option A

Add user-specific features to the feature vector!

20

Genre Year Director … Gender Age …

Action 1994 Quentin
Tarantino

… F 25 …

Sci-Fi 1977 George Lucas … M 42 …

Personalization:
Option B

Include a user-specified deviation from the global model.

Ƹ𝑟𝑢𝑣 = ෝ𝑤𝐺 + ෝ𝑤𝑢
𝑇ℎ 𝑣

Start a new user at ෝ𝑤𝑢 = 0, update over time.

▪ OLS on the residuals of the global model

▪ Bayesian Update (start with a probability distribution over
user-specific deviations, update as you get more data)

21

pollev.com/cs416

ThinkThinkThink

▪ Will feature-based recommender systems suffer from the
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?

22

2 min

Solution 3
(Feature-
Based) Pros /
Cons

Pros:

▪ No cold-start issue!
- Even if a new user/item has no purchase history, you

know features about them.

▪ Personalizes to the user and item.

▪ Scalable (only need to store weights per feature)

▪ Can add arbitrary features (e.g., time of day)

Cons:

▪ Hand-crafting features is very tedious and unscalable 

23

Recap
Dimensionality Reduction &
PCA:

▪ Why and when it’s important

▪ High level intuition for PCA

▪ Linear Projections &
Reconstruction

▪ Eigenvectors / Eigenvalues

Recommender Systems:

▪ Sol 0: Popularity

▪ Sol 1: Nearest User (User-
User)

▪ Sol 2: “People who bought
this also bought” (item-item)

▪ Sol 3: Feature-Base
24

Next Time (Rec System Continued):

▪ Sol 4: Matrix Factorization

▪ Sol 5: Hybrid Model

▪ Addressing common issues with
Recommender Systems

▪ Evaluating Recommender
Systems

Solution 2:
“People Who
Bought This
Also
Bought…”
(Item-Item)

Item-Item Recommendation:

▪ Create a co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number
of items). 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗.

▪ For item 𝑖, predict the top-k items that are bought together.

25

Normalizing
Co-
Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

𝑆𝑖𝑗 =
purchased 𝑖 and 𝑗

purchased 𝑖 or 𝑗
=

𝐶𝑖𝑗
𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 𝐶𝑖𝑗

26

Solution 4:
Matrix
Factorization

Can we learn the

features of items?

27

Matrix
Factorization
Assumptions

Assume that each item has 𝑘 (unknown) features.

▪ e.g., 𝑘 possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, sci-fi, …

▪ e.g., 𝑹𝒗 = 0.3, 0.01, 1.5, …

We can also describe each user 𝒖 with a feature vector 𝑳𝒖
▪ How much they like action, romance, sci-fi, ….

▪ Example: 𝐿𝑢 = [2.3, 0 , 0.7 , …]

Estimate rating for user 𝒖 and movie 𝒗 as
෣𝑅𝑎𝑡𝑖𝑛𝑔 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 + …

28

Matrix
Factorization
Learning

Goal: Find 𝐿𝑢 and 𝑅𝑣 that when multiplied, achieve predicted
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

This is the MSE, but we are learning both “weights” (how much
the user likes each feature) and item features!

29

Why Is It
Called Matrix
Factorization
?

30

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Also called Matrix Completion, because this technique can be used to fill
in missing values of a matrix

sli.do #cs416

Think

Suppose we have learned the following user and movie features
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?

31

1 min

sli.do #cs416

Group

Suppose we have learned the following user and movie features
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?

32

2 min

Example Suppose we have learned the following user and movie features
using 2 features

Then we can predict what each user would rate each movie

33

Coordinate
Descent

34

Find ෠𝐿 & ෠𝑅 Remember, our quality metric is

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Gradient descent is not used in practice to optimize this, since it is
much easier to implement coordinate descent (i.e., Alternating
Least Squares) to find ෠𝐿 and ෠𝑅

35

Coordinate
Descent

Goal: Minimize some function 𝑔 𝑤 = 𝑔(𝑤0, 𝑤1, … ,𝑤𝐷)

Instead of finding optima for all coordinates, do it for one
coordinate at a time!

To pick coordinate, can do round robin or
pick at random each time.

Guaranteed to find an optimal solution
under some constraints

36

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ෝ𝑤 = 0 (𝑜𝑟 𝑠𝑚𝑎𝑟𝑡𝑙𝑦)
𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑:

𝑝𝑖𝑐𝑘 𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑗
ෝ𝑤𝑗= argmin

𝑤
𝑔(ෝ𝑤0 , … , ෝ𝑤𝑗−1 , 𝑤, ෝ𝑤𝑗+1 , … , ෝ𝑤𝐷)

Coordinate
Descent for
Matrix
Factorization

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Fix movie factors 𝑅 and optimize for 𝐿

෠𝐿 = argmin
𝐿

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

First key insight: users are independent!

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

37

Coordinate
Descent for
Matrix
Factorization

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Second key insight: this looks a lot like linear regression!

ෝ𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝑤 ⋅ ℎ 𝑥𝑖 − 𝑦𝑖
2

Takeaway: For a fixed 𝑅 , we can learn 𝐿 using linear regression,
separately per user.

Conversely, for a fixed 𝐿, we can learn 𝑅 using linear regression,
separately per movie.

38

Overall
Algorithm

Want to optimize

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix movie factors 𝑅, and optimize for user factors separately

▪ Step 1: Independent least squares for each user

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣∈𝑉𝑢

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix user factors, and optimize for movie factors separately

▪ Step 2: Independent least squares for each movie

෠𝑅𝑣 = argmin
𝑅𝑣

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑣
෍

𝑢∈𝑈𝑣

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Repeatedly do these steps until convergence (to local optima)

System might be underdetermined: Use regularization 39

sli.do #cs416

Think

40

1.5 minutes

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user
factors. Which factors would change?

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None
40

sli.do #cs416

Group

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user
factors. Which factors would change?

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None
41

3 minutes

Brain BreakBrain BreakBrain Break

42

What Has
Matrix
Factorization
Learnt?

Matrix Factorization is a very versatile technique!

▪ Learns a latent space of topics that are most predictive of user
preferences.

▪ Learns the “topics” that exist in movie 𝑣: ෠𝑅𝑣

▪ Learns the “topic preferences” for user 𝑢: ෠𝐿𝑢

▪ Predict how much a user 𝑢 will like a movie 𝑣
෣𝑅𝑎𝑡𝑖𝑛𝑔 𝑢, 𝑣 = ෠𝐿𝑢 ⋅ ෠𝑅𝑣

43

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Applications:
Recommender
Systems

Recommendations: (Semi-Supervised)

▪ Use matrix factorization to predict user ratings on movies the user
hasn’t watched

▪ Recommend movies with highest predicted rating

44

User Movie Rating

Applications:
Topic
Modeling

Topic Modeling: (Unsupervised)

▪ Treat the TF-IDF matrix as the user-item matrix
- Documents are ”users”
- Words are “items”

▪ 𝐿 tells us which topics are present in each document

▪ 𝑅 tells us what words each topic is composed of

▪ Oftentimes, the topics are interpretable!

▪ HW7 Programming: Tweet Topic Modeling

45

Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X = ≈X L
R’

=

Application to text data:

Solution 4
(Matrix
Factorization)
Pros / Cons

Pros:

▪ Personalizes to item and user!

▪ Learns latent features that are most predictive of user ratings.

Cons:

▪ Cold-Start Problem
- What do you do about new users or items, with no

data?

46

Common
Issues with
Recommender
Systems

(and some solutions)

47

48

sli.do #cs416

Think

▪ You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The
system works very well on existing users and songs, but does
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your
recommender system to handle new songs/users?

49

1 min

sli.do #cs416

Group

▪ You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The
system works very well on existing users and songs, but does
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your
recommender system to handle new songs/users?

50

2 min

Comparing
Recommender
Systems

51

Efficiency
(Space,
Deploy)

Efficiency
(Time,

Deploy)

Addresses
Cold-
Start?

Personalizes
to User?

Discovers
Latent

Features?

User-User

Item-Item

Feature-
Based

Matrix
Factorization

Hybrid
(Feature-
Based +

Matrix
Factorization)

Featurized
Matrix
Factorization

Feature-based approach

▪ Feature representation of user and movie fixed

▪ Can address cold start problem

Matrix factorization approach

▪ Suffers from cold start problem

▪ User & Movie features are learned from data

A unified model

52

Cold-Start
Problem

When a new user comes in, we don’t know what items they like!
When a new item comes into our system, we don’t know who
likes it! This is called the cold start problem.

Addressing the cold-start problem (for new users):

▪ Give random predictions to a new user.

▪ Give the globally popular recommendations to a new user.

▪ Require users to rate items before using the service.

▪ Use a feature-based model (or a hybrid between feature-
based and matrix factorization) for new users.

53

Top-K versus
Diverse
Recommend-
ations

54

Top-k recommendations might be very redundant

▪ Someone who likes Rocky I also will likely enjoy Rocky II, Rocky
III, Rocky IV, Rocky V

Diverse Recommendations

▪ Users are multi-faceted & we want to hedge our bets

▪ Maybe recommend: Rocky II, Always Sunny in Philadelphia,
Robin Hood

Solution: Maximal Marginal Relevance

▪ Pick recommendations one-at-a-time.

▪ Select the item that the user is most likely to like and that is
most dissimilar from existing recommendations.

- Hyperparameter 𝜆 to trade-off between those objectives.

Feedback
Loops / Echo
Chambers

Users always get recommended similar content and are unable to
discover new content they might like.

▪ Exploration-Exploitation Dilemma
- Common problem in “online learning” settings

▪ Pure Exploration: show users random content
- Users can discover new interests, but will likely be unsatisfied

▪ Pure Exploitation: show users content they’re likely to like
- Users can’t discover new interests.

▪ Solution: Multi-Armed Bandit Algorithms (beyond the scope of 416)
55

content users
watch

their
recommendations

influencesinfluences

Radicalization
Pathways

In the real-world, recommender systems guide us along a path
through the content in a service.

▪ If watch video 1, recommend video 2

▪ If watch video 2, recommend video 3

A 2019 study found that YouTube’s algorithms lead users to
more and more radical content.

▪ “Intellectual Dark Web” ➔ Alt-Lite ➔ Alt-Right

▪ See more: iSchool 2021 Spring Lecture on Algorithmic Bias &
Governance

Youtube’s response has been whack-a-mole. (Remove the
content, manually tweak the recommendations for that topic)

56

https://arxiv.org/abs/1908.08313
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://www.themantle.com/arts-and-culture/why-youtubes-decision-remove-far-right-content-not-enough

TikTok 2021 experiment on time-to-seeing radical alt-right content

57Source: https://www.tiktok.com/@tofology/video/7016081760643534085?lang=en

https://www.mediamatters.org/tiktok/tiktoks-algorithm-leads-users-transphobic-videos-far-right-rabbit-holes

Evaluating
Recommender
Systems

58

MSE /
Accuracy?

▪ It is possible to evaluate recommender systems using existing
metrics we have learnt:

- MSE (if predicting ratings)
- Accuracy (if predicting like/dislike, or click/ignore)

▪ However, we don’t really care about accurately predicting
what a user won’t like.

▪ Rather, we care about finding the few items they will like.

Instead, we focus on the following metrics:

▪ How many of our recommendations did the user like?

▪ How many of the items that the user liked did we
recommend?

Sound familiar?
59

Precision -
Recall

Precision and recall for recommender systems

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

𝑠ℎ𝑜𝑤𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

#𝑙𝑖𝑘𝑒𝑑

What happens as we vary the number of recommendations we make?

Best Recommender System:

▪ Top-1: high precision, low recall

▪ Top-k (large k): high precision, high recall

Average Recommender System:

▪ Top-1: average precision, low recall

▪ Top-k (large k): low precision, high recall
60

Precision -
Recall
Curves

61

Comparing
Recommender
Systems

In general, it depends

▪ What is true always is that for a given precision, we want
recall to be as large as possible (and vice versa)

▪ What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision
(precision at k)

62

Recap

Now you know how to:

▪ Describe the input (observations, number of “topics”) and
output (“topic” vectors, predicted values) of a matrix
factorization model

▪ Implement a coordinate descent algorithm for optimizing the
matrix factorization objective presented

▪ Compare different approaches to recommender systems

▪ Describe the cold-start problem and ways to handle it (e.g.,
incorporating features)

▪ Analyze performance of various recommender systems in
terms of precision and recall

▪ Use AUC or precision-at-k to select amongst candidate
algorithms

63

	Slide 1: CSE/STAT 416 Recommender Systems: Matrix Factorization Pre-Class Videos Tanmay Shah University of Washington Aug 7, 2024
	Slide 2: Matrix Completion
	Slide 3: Matrix Factorization Assumptions
	Slide 4: Example
	Slide 5: Matrix Factorization
	Slide 6: Unique Solution?
	Slide 7: CSE/STAT 416 Recommender Systems: Matrix Factorization Hunter Schafer University of Washington May 24, 2023 ❓ Questions? Raise hand or sli.do #cs416 🎵 Listening to:
	Slide 8: Recommender Systems Setup
	Slide 9: Solution 0: Popularity
	Slide 10: Solution 1: Nearest User (User-User)
	Slide 11: Solution 2: “People Who Bought This Also Bought…”
	Slide 12: Solution 2: “People Who Bought This Also Bought…” (Item-Item)
	Slide 13: Normalizing Co-Occurence Matrices
	Slide 14: Incorporating Purchase History
	Slide 15: 2 min
	Slide 16: Solution 2 (Item-Item) Pros / Cons
	Slide 17: Solution 3: Feature-Based
	Slide 18: Solution 3: Feature-Based
	Slide 19: Solution 3: Feature-Based
	Slide 20: Personalization: Option A
	Slide 21: Personalization: Option B
	Slide 22: 2 min
	Slide 23: Solution 3 (Feature-Based) Pros / Cons
	Slide 24: Recap
	Slide 25: Solution 2: “People Who Bought This Also Bought…” (Item-Item)
	Slide 26: Normalizing Co-Occurence Matrices
	Slide 27: Solution 4: Matrix Factorization
	Slide 28: Matrix Factorization Assumptions
	Slide 29: Matrix Factorization Learning
	Slide 30: Why Is It Called Matrix Factorization?
	Slide 31: 1 min
	Slide 32: 2 min
	Slide 33: Example
	Slide 34: Coordinate Descent
	Slide 35: Find L & R
	Slide 36: Coordinate Descent
	Slide 37: Coordinate Descent for Matrix Factorization
	Slide 38: Coordinate Descent for Matrix Factorization
	Slide 39: Overall Algorithm
	Slide 40: 1.5 minutes
	Slide 41: 3 minutes
	Slide 42
	Slide 43: What Has Matrix Factorization Learnt?
	Slide 44: Applications: Recommender Systems
	Slide 45: Applications: Topic Modeling
	Slide 46: Solution 4 (Matrix Factorization) Pros / Cons
	Slide 47: Common Issues with Recommender Systems
	Slide 48
	Slide 49: 1 min
	Slide 50: 2 min
	Slide 51: Comparing Recommender Systems
	Slide 52: Featurized Matrix Factorization
	Slide 53: Cold-Start Problem
	Slide 54: Top-K versus Diverse Recommend-ations
	Slide 55: Feedback Loops / Echo Chambers
	Slide 56: Radicalization Pathways
	Slide 57: TikTok
	Slide 58: Evaluating Recommender Systems
	Slide 59: MSE / Accuracy?
	Slide 60: Precision - Recall
	Slide 61: Precision - Recall Curves
	Slide 62: Comparing Recommender Systems
	Slide 63: Recap

