
CSE/STAT 416
Dimensionality Reduction &
Recommender Systems Intro
Pre-Class Videos

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

Aug 5, 2024

Questions? Raise hand or sli.do #cs416
Listening to: Still Woozy

Personalization Personalization is transforming our experience of the world
Youtube
Netflix
Amazon
Spotify
Facebook
Many more…

Almost all have share a common trait where there are users that
use the system and items that we want the user to look at.

A recommender system recommends items to a user based on
what we think will be the most “useful” for the user.

2

Recommender
System
Challenges

3

Types of
Feedback

Explicit - User tells us what she likes

Implicit – We try to infer what she likes from usage data

4

Top-k vs
Diverse
Outputs

Top-k recommendations might be very redundant

▪ Someone who likes Rocky I also will likely enjoy Rocky II,
Rocky III, Rocky IV, Rocky V

Diverse Recommendations

▪ Users are multi-faceted & we want to hedge our bets

▪ Maybe recommend: Rocky II, Always Sunny in Philadelphia,
Robin Hood

5

Cold Start When a new movie comes into our system, we don’t know who
likes it! This is called the cold start problem.

Generally, to solve we will need “side information”

▪ Genre, actors, if it’s a sequel

Could also try to test users to see if they like it to learn quickly

6

That’s So
Last Year

Interests change over time

▪ Is it 1967?

▪ Or 1977?

▪ Or 1998?

▪ Or 2011?

Models need flexibility to adapt to users

▪ Macro scale

▪ Micro scale (fads)

7

Scalability For 𝑁 users and 𝑀 movies, some approaches take 𝒪 𝑁3 +𝑀3

time. This can be prohibitively slow for billions of users.

Big focus has been on:

▪ Efficient implementations

▪ Exact or faster approximate methods as needed

8

Popularity
Solution 0

9

Popularity Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e. Avengers Endgame)

Limitations

▪ No personalization

▪ Feedback loops

10

Classification
Model

Solution 1

11

Learn a
Classifier

Train a classifier to learn whether or not someone will like an item

Pros

▪ Personalized

▪ Features can capture context (time of day, recent history, …)

▪ Can even handle limited user history (age of user, location, …)

12

Learn a
Classifier

Train a classifier to learn whether or not someone will like an item

Cons

▪ Features might not be available or hard to work with

▪ Often doesn’t perform well in practice when compared to
more advanced techniques like collaborative filtering

▪ Can still lead to feedback loops.

13

Roadmap We will learn more advanced ideas for recommendation. Before
that, we want to explore a slightly unrelated idea of
dimensionality reduction.

▪ This will be useful in helping us think about some key ideas
for what can make recommendation useful.

▪ A very general/powerful tool useful in other ML applications.

Today:

▪ Recommender System Intro

▪ Dimensionality Reduction (PCA)

Wednesday

▪ Matrix Factorization
14

CSE/STAT 416
Dimensionality Reduction &
Recommender Systems Intro

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

Aug 5, 2024

Questions? Raise hand or sli.do #cs416
Listening to: Still Woozy

Dimensionality
Reduction

16

Large
Dimensionality

Input data might have thousands or millions of dimensions!

▪ Images: 200x200 image is 120,000 features!

▪ Text: # features = # n-grams

▪ Course Success: dozen(s) of features

▪ User Ratings: 100s of ratings (one per rate-able item)

17

Issues with Too
Many
Dimensions

▪ Visualization: Hard to visualize more than 3D.

▪ Overfitting: Greater risk of overfitting with more
features/dimensions

▪ Scalability: some ML approaches (e.g., k-nn, k-means) perform
poorly in high-dimensional spaces (curse of dimensionality)

▪ Redundancy: high-dimensional data often occupies a lower-
dimensional subspace.

- Most pixels in MNIST (digit recognition) are white – are they
necessary?

- Image Compression

18

Dimensionality
Reduction

Dimensionality Reduction is the the task of representing the data
with a fewer number of dimensions, while keeping meaningful
relations between data

19

Example:
Embedding
Pictures

Example: Embed high dimensional data in low dimensions to
visualize the data

▪ Goal: Similar images should be near each other.

20

Example:
Embedding
Words

21

Example:
Embedding
Words

22

Principal
Component
Analysis
(PCA)

One very popular dimensionality reduction algorithm is called
Principal Component Analysis (PCA).

Idea: Use a linear projection from 𝑑-dimensional data to
𝑘-dimensional data

▪ E.g. 1000 dimension word vectors to 3 dimensions

Choose the projection that minimizes reconstruction error

▪ Idea: The information lost if you were to ”undo” the projection

23

Principal
Component
Analysis
(PCA)

24

Regions with
no data. Data
exists close to
a lower-
dimensional
subspace.

Linear
Projection

Project data into 1 dimension along a line

25

Reconstruction Reconstruct original data only knowing the projection

26

Linear
Projection in
Higher
Dimensions

27

Think of PCA as giving each datapoint a new ”address.”

▪ Earlier, you could find the datapoint by going to the location
(x, y, z).

▪ Now, if you are just moving in the projection plane, you can
(approximately) find the datapoint by going to the location
(𝑢1, 𝑢2)

pollev.com/cs416

ThinkThinkThink

▪ Compute the 2D coordinates of the following point. Then

compute its reconstruction error.

- 𝑥𝑖 = 0,−7, 3, 2, 5

- 𝑢1 = [−0.5, 0, 0.5, −0.5, 0.5]

- 𝑢2 = [0.5, 0, 0.5,−0.5,−0.5]

- 𝑧𝑖 = ??

- ො𝑥𝑖 = ??

- ො𝑥𝑖 − 𝑥𝑖 2
2 = ??

28

2 min

pollev.com/cs416

ThinkThinkThink

▪ Compute the 2D coordinates of the following point. Then

compute its reconstruction error.

- 𝑥𝑖 = 0,−7, 3, 2, 5

- 𝑢1 = [−0.5, 0, 0.5, −0.5, 0.5]

- 𝑢2 = [0.5, 0, 0.5,−0.5,−0.5]

- 𝑧𝑖 = ??

- ො𝑥𝑖 = ??

- ො𝑥𝑖 − 𝑥𝑖 2
2 = ??

29

2 min

How do we
find the best
projection
vector(s)?

30
Pick the vector(s) along which the datapoints have the most variation!

Eigenvectors ▪ There is a quantity in linear algebra that does exactly that!

▪ The eigenvectors of a d-dimensional dataset* are a collection of d
perpendicular vectors that point in the directions of greatest
variation amongst the points in the dataset.

▪ Eigenvectors rotate the axes of the d dimensional space.

* (caveat) the eigenvectors are actually associated with the covariance
matrix of the dataset

31

Eigenvalues ▪ Each eigenvector has a corresponding eigenvalue, indicating
how much the dataset varies in that direction.

▪ Greater eigenvalue ➔ greater variance.

▪ PCA: Take the 𝑘 eigenvectors with greatest eigenvalues.
32

PCA
Algorithm

Input Data: An n × 𝑑 data matrix 𝑋
- Each row is an example

1. Center Data: Subtract mean from each row
𝑋𝑐 ← 𝑋 − ത𝑋[1: 𝑑]

2. Compute spread/orientation: Compute covariance matrix Σ

Σ 𝑡, 𝑠 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑐,𝑖 𝑡 𝑥𝑐,𝑖[𝑠]

3. Find basis for orientation: Compute eigenvectors of Σ
- Select 𝑘 eigenvectors 𝑢1, … , 𝑢𝑘 with largest eigenvalues

4. Project Data: Project data onto principal components
𝑧𝑖 1 = 𝑢1

𝑇𝑥𝑐,𝑖 = 𝑢1 1 𝑥𝑐,𝑖 1 +⋯+ 𝑢1 𝑑 𝑥𝑐,𝑖 𝑑

…

𝑧𝑖 𝑘 = 𝑢𝑘
𝑇𝑥𝑐,𝑖 = 𝑢𝑘 1 𝑥𝑐,𝑖 1 +⋯+ 𝑢𝑘 𝑑 𝑥𝑐,𝑖 𝑑

33

Reconstructing
Data

Using principal components and the projected data, you can
reconstruct the data in the original domain.

ො𝑥𝑖 1: 𝑑 = ത𝑋 1: 𝑑 + ෍
𝑗=1

𝑘

𝑧𝑖 𝑗 𝑢𝑗

34

Example:
Eigenfaces

Apply PCA to face data

35

Input Data Principal Components

Reconstructing
Faces

Depending on context, it may make sense to look at either original
data or projected data.

In this case, let’s see how the original data looks after using more
and more principal components for reconstruction.

▪ Each image shows additional 8 principal components

36

Embedding
Images

Other times, it does make sense to look at the data in the
projected space! (Usually if 𝑘 ≤ 3)

37

Example:
Genes

Dataset of genes of Europeans (3192 people; 500,568 loci) and
their country of origin, ran PCA on the data and plotted 2 principal
components.

38

Brain BreakBrain BreakBrain Break

39

General
Steps to
Take as an
ML
Practitioner

Given a new dataset:

▪ Split into train and test sets.

▪ Understand the dataset:
▪ Understand the feature/label types and values
▪ Visualize the data: scatterplot, boxplot, PCA, clustering

▪ Use that intuition to decide:
▪ What features to use, and what transformations to

apply to them (pre-processing).
▪ What model(s) to train.

▪ Train the models, evaluate them using a validation set or
cross-validation.

▪ Deploy the best model.

40

Intro to
Recommender
Systems

41

Recommender
Systems are
Everywhere

42

▪ You have 𝑛 users and 𝑚 items in your system
- Typically, 𝑛 ≫ 𝑚. E.g., Youtube: 2.6B users, 800M videos

▪ Based on the content, we have a way of measuring user preference.

▪ This data is put together into a user-item interaction matrix.

▪ Task: Given a user 𝑢𝑖 or item 𝑣𝑗, predict one or more items to
recommend.

Recommender
Systems Setup

43

Solution 0:
Popularity

44

Solution 0:
Popularity

Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e., Squid Game)

45

Sum
Across
Users

Recommend
Top-K

Solution 0
(Popularity)
Pros / Cons

Pros:

▪ Easy to implement

Cons:

▪ No Personalization

▪ Feedback Loops

▪ Top-K recommendations might be redundant
- e.g., when a new Harry Potter movie is released, the

others may also jump into top-k popularity.

46

Solution 1:
Nearest User

User-User

47

Solution 1:
Nearest User
(User-User)

User-User Recommendation:

▪ Given a user 𝑢𝑖, compute their 𝑘 nearest neighbors.

▪ Recommend the items that are most popular amongst the
nearest neighbors.

48

sli.do #cs416

Group

▪ What do you see as pros / cons of the nearest user approach
to recommendations?

49

2 min

Solution 1
(User-User)
Pros / Cons

Pros:

▪ Personalized to the user.

Cons:

▪ Nearest Neighbors might be too similar
- This approach only works if the nearest neighbors have

interacted with items that the user hasn’t.

▪ Feedback Loop (Echo Chambers)

▪ Scalability
- Must store and search through entire user-item matrix

▪ Cold-Start Problem
- What do you do about new users, with no data?

50

Solution 2:
“People Who
Bought This
Also
Bought…”

Item-Item

51

Solution 2:
“People Who
Bought This
Also
Bought…”
(Item-Item)

Item-Item Recommendation:

▪ Create a co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number
of items). 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗.

▪ For item 𝑖, predict the top-k items that are bought together.

52

Normalizing
Co-Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

𝑆𝑖𝑗 =
purchased 𝑖 and 𝑗

purchased 𝑖 or 𝑗
=

𝐶𝑖𝑗
𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 𝐶𝑖𝑗

53

Incorporating
Purchase
History

What if I know the user 𝑢 has bought a baby bottle and formula?

Idea: Take the average similarity between items they have bought

𝑆𝑐𝑜𝑟𝑒 𝑢, 𝑑𝑖𝑎𝑝𝑒𝑟𝑠 =
𝑆𝑑𝑖𝑎𝑝𝑒𝑟𝑠,𝑏𝑎𝑏𝑦 𝑏𝑜𝑡𝑡𝑙𝑒 + 𝑆𝑑𝑖𝑎𝑝𝑒𝑟𝑠,𝑏𝑎𝑏𝑦 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

2

Could also weight them differently based on recency of purchase!

Then all we need to do is find the item with the highest average
score!

54

sli.do #cs416

Group

▪ What do you see as pros / cons of the item-item approach to
recommendations?

55

2 min

Solution 2
(Item-Item)
Pros / Cons

Pros:

▪ Personalizes to item (incorporating purchase history also
personalizes to the user)

Cons:

▪ Can still suffer from feedback loops
- (As can all recommender systems – but in some cases it’s

worse than others)

▪ Scalability (must store entire item-item matrix)

▪ Cold-Start Problem
- What do you do about new items, with no data?

56

Solution 3:
Feature-
Based

57

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

58

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

Ƹ𝑟𝑢𝑣 = 𝑤𝐺
𝑇ℎ 𝑣 =෍

𝑖

𝑤𝐺,𝑖 ℎ𝑖(𝑣)

ෝ𝑤𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝑤𝐺
𝑇ℎ 𝑣 − 𝑟𝑢𝑣

2 + 𝜆 𝑤𝐺

59

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Personalization:
Option A

Add user-specific features to the feature vector!

60

Genre Year Director … Gender Age …

Action 1994 Quentin
Tarantino

… F 25 …

Sci-Fi 1977 George Lucas … M 42 …

Personalization:
Option B

Include a user-specified deviation from the global model.

Ƹ𝑟𝑢𝑣 = ෝ𝑤𝐺 + ෝ𝑤𝑢
𝑇ℎ 𝑣

Start a new user at ෝ𝑤𝑢 = 0, update over time.

▪ OLS on the residuals of the global model

▪ Bayesian Update (start with a probability distribution over
user-specific deviations, update as you get more data)

61

sli.do #cs416

Group

▪ Will feature-based recommender systems suffer from the
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?

62

2 min

Solution 3
(Feature-
Based) Pros /
Cons

Pros:

▪ No cold-start issue!
- Even if a new user/item has no purchase history, you

know features about them.

▪ Personalizes to the user and item.

▪ Scalable (only need to store weights per feature)

▪ Can add arbitrary features (e.g., time of day)

Cons:

▪ Hand-crafting features is very tedious and unscalable 

63

Recap
Dimensionality Reduction &
PCA:

▪ Why and when it’s important

▪ High level intuition for PCA

▪ Linear Projections &
Reconstruction

▪ Eigenvectors / Eigenvalues

Recommender Systems:

▪ Sol 0: Popularity

▪ Sol 1: Nearest User (User-
User)

▪ Sol 2: “People who bought
this also bought” (item-item)

▪ Sol 3: Feature-Base
64

Next Time (Rec System Continued):

▪ Sol 4: Matrix Factorization

▪ Sol 5: Hybrid Model

▪ Addressing common issues with
Recommender Systems

▪ Evaluating Recommender
Systems

	Default Section
	Slide 1: CSE/STAT 416 Dimensionality Reduction & Recommender Systems Intro Pre-Class Videos Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington Aug 5, 2024 ❓ Questions? Raise hand or sli.do #cs416 🎵 Listening to
	Slide 2: Personalization
	Slide 3: Recommender System Challenges
	Slide 4: Types of Feedback
	Slide 5: Top-k vs Diverse Outputs
	Slide 6: Cold Start
	Slide 7: That’s So Last Year
	Slide 8: Scalability
	Slide 9: Popularity
	Slide 10: Popularity
	Slide 11: Classification Model
	Slide 12: Learn a Classifier
	Slide 13: Learn a Classifier
	Slide 14: Roadmap
	Slide 15: CSE/STAT 416 Dimensionality Reduction & Recommender Systems Intro Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington Aug 5, 2024 ❓ Questions? Raise hand or sli.do #cs416 🎵 Listening to: Still Woozy
	Slide 16: Dimensionality Reduction
	Slide 17: Large Dimensionality
	Slide 18: Issues with Too Many Dimensions
	Slide 19: Dimensionality Reduction
	Slide 20: Example: Embedding Pictures
	Slide 21: Example: Embedding Words
	Slide 22: Example: Embedding Words
	Slide 23: Principal Component Analysis (PCA)
	Slide 24: Principal Component Analysis (PCA)
	Slide 25: Linear Projection
	Slide 26: Reconstruction
	Slide 27: Linear Projection in Higher Dimensions
	Slide 28: 2 min
	Slide 29: 2 min
	Slide 30: How do we find the best projection vector(s)?
	Slide 31: Eigenvectors
	Slide 32: Eigenvalues
	Slide 33: PCA Algorithm
	Slide 34: Reconstructing Data
	Slide 35: Example: Eigenfaces
	Slide 36: Reconstructing Faces
	Slide 37: Embedding Images
	Slide 38: Example: Genes
	Slide 39
	Slide 40: General Steps to Take as an ML Practitioner
	Slide 41: Intro to Recommender Systems
	Slide 42: Recommender Systems are Everywhere
	Slide 43: Recommender Systems Setup
	Slide 44: Solution 0: Popularity
	Slide 45: Solution 0: Popularity
	Slide 46: Solution 0 (Popularity) Pros / Cons
	Slide 47: Solution 1: Nearest User
	Slide 48: Solution 1: Nearest User (User-User)
	Slide 49: 2 min
	Slide 50: Solution 1 (User-User) Pros / Cons
	Slide 51: Solution 2: “People Who Bought This Also Bought…”
	Slide 52: Solution 2: “People Who Bought This Also Bought…” (Item-Item)
	Slide 53: Normalizing Co-Occurence Matrices
	Slide 54: Incorporating Purchase History
	Slide 55: 2 min
	Slide 56: Solution 2 (Item-Item) Pros / Cons
	Slide 57: Solution 3: Feature-Based
	Slide 58: Solution 3: Feature-Based
	Slide 59: Solution 3: Feature-Based
	Slide 60: Personalization: Option A
	Slide 61: Personalization: Option B
	Slide 62: 2 min
	Slide 63: Solution 3 (Feature-Based) Pros / Cons
	Slide 64: Recap

