CSE/STAT 416

Other Clustering Methods Pre-Class Videos

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

July 31, 2024

Pre-Class Video 1

Clustering Recap

Clustering

SPORTS WORLD NEWS

Define Clusters

In their simplest form, a **cluster** is defined by

- The location of its center (**centroid**)
- Shape and size of its **spread**

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

- x_i gets assigned $z_i \in [1, 2, ..., k]$
- Usually based on closest centroid

Will define some kind of score for a clustering that determines how good the assignments are

■ Based on distance of assigned examples to each cluster

Not Always Easy

 $\Box O\Delta$

TITLE

There are many clusters that are harder to learn with this setup

EXECUTE: Distance does not determine clusters

 $\Box O\Delta$

THE

Step 0 Start by choosing the initial cluster centroids

- A common default choice is to choose centroids at random
- Will see later that there are smarter ways of initializing

Step 1 Assign each example to its closest cluster centroid

$$
z_i \leftarrow \operatorname*{argmin}_{j \in [k]} \left| \left| \mu_j - x_i \right| \right|^2
$$

Step 2 Update the centroids to be the mean of all the points assigned to that cluster.

Computes center of mass for cluster!

Smart Initializing w/ k-means++

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

- Choose first cluster μ_1 from the data uniformly at random
- 2. For the current set of centroids (starting with just μ_1), compute the distance between each datapoint and its closest centroid
- 3. Choose a new centroid from the remaining data points with probability of x_i being chosen proportional to $d(x_i)^2$
- 4. Repeat 2 and 3 until we have selected k centroids $\qquad \qquad \qquad$ 9

Problems with k-means

In real life, cluster assignments are not always clear cut

■ E.g. The moon landing: Science? World News? Conspiracy?

Because we minimize Euclidean distance, k-means assumes all the clusters are spherical

We can change this with weighted Euclidean distance

■ Still assumes every cluster is the same shape/orientation

Failure Modes of k-means

 $\Box O \Delta$

TITLE **T**

If we don't meet the assumption of spherical clusters, we will get unexpected results

 \circ \circ \circ

disparate cluster sizes overlapping clusters different
shaped/oriented
clusters clusters shaped/oriented clusters

Mixture Models

A much more flexible approach is modeling with a **mixture model**

Model each cluster as a different probability distribution and learn their parameters

- **E.g. Mixture of Gaussians**
- Allows for different cluster shapes and sizes
- Typically learned using Expectation Maximization (EM) algorithm

Allows **soft assignments** to clusters

■ 54% chance document is about world news, 45% science, 1% conspiracy theory, 0% other

Pre-Class Video 2

Divisive Clustering

Hierarchical Clustering

Nouns

DOA

COLOR

Species

DOA

 \triangledown

 \overline{O}

THE R

[https://www.instituteofcaninebiology.](https://www.instituteofcaninebiology.org/how-to-read-a-dendrogram.html)
[org/how-to-read-a-dendrogram.html](https://www.instituteofcaninebiology.org/how-to-read-a-dendrogram.html)

. . .

Motivation If we try to learn clusters in hierarchies, we can

- Avoid choosing the # of clusters beforehand
- Use **dendrograms** to help visualize different granularities of clusters
- **EXEDEN** Allow us to use any distance metric
	- K-means requires Euclidean distance
- Can often find more complex shapes than k-means

Finding Shapes

 100Δ

THE

Mixture Models

Hierarchical Clustering

Types of Algorithms

THE

Divisive, a.k.a. *top-down*

- Start with all the data in one big cluster and then recursively split the data into smaller clusters
	- Example: **recursive k-means**

Agglomerative, a.k.a. *bottom-up*:

- Start with each data point in its own cluster. Merge clusters until all points are in one big cluster.
	- Example: **single linkage clustering**

how we mea ure
distance between clusters

Divisive **Clustering**

 $\Box O \Delta$

THE

Start with all the data in one cluster, and then repeatedly run kmeans to divide the data into smaller clusters. Repeatedly run kmeans on each cluster to make sub-clusters.

Example

 $\Box O \Delta$

THE

Using Wikipedia

Choices to Make

For divisive clustering, you need to make the following choices:

- Which algorithm to use (e.g., k-means)
- **E** How many clusters per split
- When to split vs when to stop
	- **Max cluster size**
		- Number of points in cluster falls below threshold
	- **Max cluster radius**
		- distance to furthest point falls below threshold
	- **Specified # of clusters**

split until pre-specified # of clusters is reached

CSE/STAT 416

Other Clustering Methods

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

July 31, 2024

Questions? Raise hand or **sli.do #cs416 Listening to:** Still Woozy

Define **Clusters**

In their simplest form, a **cluster** is defined by

- The location of its center (**centroid**)
- Shape and size of its **spread**

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

- x_i gets assigned $z_i \in [1, 2, ..., k]$
- Usually based on closest centroid

Will define some kind of objective function for a clustering that determines how good the assignments are

- Based on distance of assigned examples to each cluster.
- Close distance reflects strong similarity between datapoints.

Not Always Easy

 $\Box O \Delta$ **TITLE** There are many clusters that are harder to learn with this setup

EXECUTE: Distance does not determine clusters

Visualizing kmeans

 $\Box O \Delta$

[https://www.naftaliharris.com/blog/visualizing-k-means](https://www.naftaliharris.com/blog/visualizing-k-means-clustering/)[clustering/](https://www.naftaliharris.com/blog/visualizing-k-means-clustering/)

D Poll Everywhere

Think 88

1.5 min

What convergence guarantees do you think we will have with kmeans, given a sufficiently large number of iterations?

Converges to the global optimum

Converges to a local optima

None

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

- Choose first cluster μ_1 from the data uniformly at random
- 2. For each datapoint $\overline{x_i}$, compute the distance between x_i and the closest centroid from the current set of centroids (starting with just μ_i). Denote that distance $d(x_i).$
- 3. Choose a new centroid from the remaining data points, where the probability of x_i being chosen is proportional to $d(x_i)^2$.
- 4. Repeat 2 and 3 until we have selected k centroids.

Assessing Performance

Which Cluster?

 $\Box \Omega \Delta$

TITLE

Which clustering would I prefer?

Don't know, there is no "right answer" in clustering \mathbb{C} . Depends on the practitioner's domain-specific knowledge and interpretation of results!

Which Cluster?

 $\Box \Omega \Delta$

THE **ST**

Which clustering does k-means prefer?

k-means is trying to optimize the **heterogeneity** objective

$$
\underset{z,\mu}{\text{argmin}} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ z_i = j \} \left| \left| \mu_j - x_i \right| \right|_2^2
$$

D Poll Everywhere

Think 88 1 min **political** ᢙ

Consider training k-means to convergence for different values of k. Which of the following graphs shows how the heterogeneity objective will change based on the value of k?

D Poll Everywhere

Think 88

2 mins

ନ

Consider training k-means to convergence for different values of k. Which of the following graphs shows how the heterogeneity objective will change based on the value of k?

How to Choose k?

 $\Box O \Delta$

TITLE

Note: You will usually have to run k-means multiple times for each k

Cluster shape

 $\Box \Omega \Delta$

TIME

• k-means works well for well-separated **hyper-spherical** clusters of the same size

Clustering vs Classification

- Clustering looks like we assigned labels (by coloring or numbering different groups) but we didn't use any **labeled** data.
- **EXEDE.** In clustering, the "labels" don't have meaning. To give meaning to the labels, human inputs is required
- Classification learns from minimizing the error between a prediction and an actual **label**.
- Clustering learns by minimizing the distance between points in a cluster.
- Classification quality metrics (accuracy / loss) do not apply to clustering (since there is no label).
- You can't use validation set / cross-validation to choose the best choice of k for clustering.

- Recap Differences between classification and clustering
	- What types of clusters can be formed by k-means \mathbb{R}^n
	- K-means algorithm \mathbb{R}^n
	- Convergence of k-means \mathbb{R}^2
	- How to choose k \mathbb{R}^2
	- Better initialization using k-means++ $\mathcal{L}_{\mathcal{A}}$

Failure Modes of k-means

 $\Box O \Delta$

TITLE **T**

If we don't meet the assumption of spherical clusters, we will get unexpected results

 \circ \circ \circ

disparate cluster sizes overlapping clusters different
shaped/oriented
clusters clusters shaped/oriented clusters

Visualizing **Gaussian** Mixture Models

DOA

CONTENT

Nouns

DOA

COLOR

Types of Algorithms

THE

Divisive, a.k.a. *top-down*

- Start with all the data in one big cluster and then recursively split the data into smaller clusters
	- Example: **recursive k-means**

Agglomerative, a.k.a. *bottom-up*:

- Start with each data point in its own cluster. Merge clusters until all points are in one big cluster.
	- Example: **single linkage clustering**

Show we measure
distance between clusters

Divisive Clustering $k = 3$

Start with all the data in one cluster, and then repeatedly run kmeans to divide the data into smaller clusters. Repeatedly run kmeans on each cluster to make sub-clusters.

 \overline{O} \overline{O} Ω \circ \overline{O} \circ \circ

Example $K = 2$

Bisecting
K-means

Using Wikipedia

Bisecting K-Means

Bisecting K-Means

D Poll Everywhere

Think 88

1 min

- You want to detect outliers in a dataset (shown below).
	- How would you use k-means clustering to detect outliers?
	- How would you use divisive clustering to detect outliers?

47

Algorithm at a glance

- 1. Initialize each point in its own cluster
- 2. Define a distance metric between clusters \leftarrow Myper porameter

While there is more than one cluster

3. Merge the two closest clusters (and add it to

Step 1

$\Box O \Delta$ **THE R**

1. Initialize each point to be its own cluster

Step 2

2. Define a distance metric between clusters

Single Linkage $distance(C_1, C_2) =$ min $x_i \in \subset_1$, $x_j \in \subset_2$ $d(x_i, x_j)$

This formula means we are defining the distance between two clusters as the smallest distance between any pair of points between the clusters.

Step 3 Merge closest pair of clusters

 $\Box O \Delta$

THE R

Repeat Notice that the height of the dendrogram is growing as we group points farther from each other

Repeat

 $\Box O\Delta$ **THE**

Repeat **Repeat Step 3 until 12** Looking at the dendrogram, we can see there is a bit of an outlier!

Can tell by seeing a point join a cluster with a really large distance. Distance between the $+w_0$
merged clusters

57

Repeat The tall links in the dendrogram show us we are merging clusters Repeat that are far away from each other

DOA

THE R

Repeat Final result after merging all clusters and result after merging all clusters

Final Result

D Poll Everywhere

Think 88

1 min

▪ In what order will the following points get merged into clusters? Use L2 (Euclidean) distance, and the single linkage function.

 $\frac{1}{2}$ cm $\frac{1}{2}$

OOA

Dendrograms

 $\Box O \Delta$

an m

With agglomerative clustering, we are now very able to learn weirder clusterings like
Single Linkage', min dist(x;xj)

Single Linkage can merge chains

 $\Box O\Delta$

TITLE

Dendrogram x-axis shows the datapoints (arranged in a very particular order) y-axis shows distance between merged clusters

 $\Box \Omega \Delta$

an m

Dendrogram The path shows you all clusters that a single point belongs and the order in which its clusters merged

Cut Dendrogram

 $\Box \Omega \Delta$

THE **ST**

Choose a distance D^* to "cut" the dendrogram

- Use the largest clusters with distance $< D^*$ $\mathcal{L}_{\mathcal{A}}$
- Usually ignore the idea of the nested clusters after cutting $\mathcal{L}_{\mathcal{A}}$

D Poll Everywhere

Think 88

1 min

O

How many clusters would we have if we use this threshold?

D Poll Everywhere

Think 88

2 min

How many clusters would we have if we use this threshold?

Cut Dendrogram

 $\Box\Diamond\Delta$

THE B

Every branch that crosses D^* becomes its own cluster

Choices to Make

 $\Box \Omega \Delta$

TITLE **T**

For agglomerative clustering, you need to make the following choices:

- Distance metric $d(x_i, x_j)$ \equiv
- Linkage function \equiv
	- Single Linkage:

$$
D(C_1, C_2) = \min_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)
$$

Complete Linkage:

$$
D(C_1, C_2) = \max_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)
$$

Centroid Linkage

$$
D(C_1, C_2) = d(\mu_1, \mu_2)
$$

Others

Cluster distance

D*

Where and how to cut dendrogram \equiv

Data points

Linkage Functions

Practical **Notes**

For visualization, generally a smaller # of clusters is better

For tasks like outlier detection, cut based on:

- Distance threshold
- **Or some other metric that tries to measure how big the** distance increased after a merge

No matter what metric or what threshold you use, no method is "incorrect". Some are just more useful than others.

Computational Cost of Agglomerative **Clustering**

. . .

Computing all pairs of distances is pretty expensive!

A simple implementation takes $O(n^2 \log(n))$ \mathcal{L}

Can be much implemented more cleverly by taking advantage of the **triangle inequality**

"Any side of a triangle must be less than the sum of its sides"

Best known algorithm is $O(n^2)$

 \bar{a}

k-means vs. Agglomerative **Clustering**

- K-means is more efficient on big data than hierarchical clustering.
- **EXED** Initialization changes results in k-means, not in agglomerative clustering has reproducible results.
- K-means works well only for hyper-spherical clusters, agglomerative clustering can handle more complex cluster shapes.
- K-means requires selecting a number of clusters beforehand. In agglomerative clustering, you can decide on the number of clusters afterwards using the dendrogram.

Concept Inventory

This week we want to practice recalling vocabulary. Spend 10 minutes trying to write down all the terms for concepts we have learned in this class and try to bucket them into the following categories.

Regression Classification Deep Learning Document Retrieval Misc – For things that fit in multiple places or none of the above

You don't need to define/explain the terms for this exercise, but you should know what they are!

Try to do this for at least 5 minutes from recall before looking at your notes! The same state of the state

 $\Box O\Delta$

THE

- Recap **Recap Recap Recapate 1** Problems with k-means
	- Mixture Models
	- **EXECUTE:** Hierarchical clustering
	- **Exercise** Clustering
	- **E** Agglomerative Clustering
	- Dendrograms