
CSE/STAT 416
k-means Clustering

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

July 29, 2024

Questions? Raise hand

TF-IDF Goal: Emphasize important words

▪ Appear frequently in the document (common locally)

▪ Appears rarely in the corpus (rare globally)

Do a pair-wise multiplication to compute the TF-IDF for each
word

▪ Words that appear in every document will have a small IDF
making the TF-IDF small!

2

tf * idf

Term frequency =

Inverse doc freq. = log
docs

1 + # docs using word

word counts

pollev.com/cs416

ThinkThinkThink

What is the 𝑇𝐹 − 𝐼𝐷𝐹(“𝑟𝑎𝑖𝑛”, 𝐷𝑜𝑐1) with the following documents
(assume standard pre-processing)

▪ Doc 1: It is going to rain today.

▪ Doc 2: Today I am not going outside.

▪ Doc 3: I am going to watch the season premiere.

3

1.5 min

Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into
separate bins

3. Large computation cost: Only dividing the points in half
doesn’t speed things up that much…

4

1. How to
choose line?

Wild Idea: Choose the line randomly!

▪ Choose a slope randomly between 0 and 90 degrees

How bad can randomly picking it be?

▪ If two points have a small cosine distance, it is unlikely that
we will split them into different bins!

5

#
aw

fu
l

0 1 2 3 4 …

0

1

2

3

4

…

θxy

Bins are
the same

Bins are
the same

Bins are
different

If θxy is small (x,y close),
unlikely to be placed into

separate bins

x

y

Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into
separate bins

3. Large computation cost: Only dividing the points in half
doesn’t speed things up that much…

6

Brain BreakBrain BreakBrain Break

7

More Bins Can reduce search cost by adding more lines, increasing the
number of bins.

For example, if we use 3 lines, we can make more bins!

8
#awesome

#a
w

fu
l

0 1 2 3 4 …

0

1

2

3

4

…

Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

LSH with
Many Bins

Create a table of all data points and calculate their bin index
based on some chosen lines. Store points in hash table indexed
by all bin indexes

When searching for a point 𝑥𝑞:

▪ Find its bin index based on the lines

▪ Only search over the points in that bin

9

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0] =
2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

Data
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

2D Data Sign
(Score1)

Bin 1
index

Sign
(Score2)

Bin 2
index

Sign
(Score3)

Bin 3
index

x1 = [0, 5] -1 0 -1 0 -1 0

x2 = [1, 3] -1 0 -1 0 -1 0

x3 = [3, 0] 1 1 1 1 1 1

… … … … … … …

LSH Example Imagine my query point was (2, 2)

This has bin index [0 1 0]

By using multiple bins, we have reduced the search time!

However, it’s more likely that we separate points from their true
nearest neighbors since we do more splits 

▪ Often with approximate methods, there is a tradeoff between
speed and accuracy.

10

#awesome

#a
w

fu
l

0 1 2 3 4 …
0

1
2

3
4

… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Bin [0 0 0]

= 0

[0 0 1]

= 1

[0 1 0]

= 2

[0 1 1]

= 3

[1 0 0]

= 4

[1 0 1]

= 5

[1 1 0]

= 6

[1 1 1]

= 7

Data

indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

Improve
Quality

The nice thing about LSH is we can actually tune this tradeoff by
looking at nearby bins. If we spend longer searching, we are likely
to find a better answer.

What does ”nearby” mean for bins?

In practice, set some time “budget” and
keep searching nearby bins until budget
runs out 11

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0] =
2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0] =
6

[1 1 1]
= 7

Data
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

Next closest
bins
(flip 1 bit)

#awesome

#
aw

fu
l

0 1 2 3 4 …
0

1
2

3
4

… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Locality
Sensitive
Hashing
(LSH)

Pre-Processing Algorithm

▪ Draw ℎ lines randomly

▪ For each data point, compute 𝑆𝑐𝑜𝑟𝑒 𝑥𝑖 for each line

▪ Translate the scores into binary indices

▪ Use binary indices as a key to store the point in a hash table

Querying LSH

▪ For query point 𝑥𝑞 compute 𝑆𝑐𝑜𝑟𝑒(𝑥𝑞) for each of the ℎ lines

▪ Translate scores into binary indices. Lookup all data points
that have the same key.

▪ Do exact nearest neighbor search just on this bin.

▪ If there is more time in the computation budget, go look at
nearby bins until this budget runs out.

12

Higher
Dimensions

Pick random hyper-plane to separate points for points in higher
dimensions.

Unclear how to pick ℎ for LSH and you can’t do cross-validation
here (why?)

▪ Generally people use ℎ ≈ log(𝑑)

13

Recap Theme: Use local methods for classification and regression and
speed up nearest neighbor search with approximation methods.

Ideas:

▪ 1-NN Regression and Classification

▪ k-NN Regression and Classification

▪ Weighted k-NN vs Kernel Regression

▪ Locality Sensitive Hashing

14

Curse of
Dimensionality

15

High
Dimensions

Methods like k-NN and k-means that rely on computing distances
start to struggle in high dimensions.

As the number of dimensions grow, the data gets sparser!

Need more data to make sure you cover all the space in high dim.
16

Even
Weirder

It’s believable with more dimensions the data becomes more
sparse, but what’s even weirder is the sparsity is not uniform!

As 𝐷 increases, the “mass” of the space goes towards the corners.

▪ Most of the points aren’t in the center.

▪ Your nearest neighbors start looking like your farthest
neighbors!

17

Practicalities Have you pay attention to the number of dimensions

▪ Very tricky if 𝑛 < 𝐷

▪ Can run into some strange results if 𝐷 is very large

Later, we will talk about ways of trying to do dimensionality
reduction in order to reduce the number of dimensions here.

18

HW5 – ML
Practice with
Kaggle

Kaggle is a website that hosts ML competitions. Very popular
among people trying to learn more about ML! Let’s you practice a
lot of real-world ML skills on challenging problems.

About halfway through the course, want to give you a chance to
apply what you’ve learned in the real-world! HW5 will be hosted
as an internal Kaggle competition.

TAs in section tomorrow will walk through how to do
submissions, but all instructions are on the Kaggle website (linked
from HW spec).

NOT graded as a competition. The leaderboard is just for fun,
and we will provide a small amount of EC to the top 3 teams.

19

Submission
and Grading

You will need to submit three things:

▪ On Kaggle, submit your predictions for the test set

▪ On Gradescope, submit your Jupyter Notebook that
trains/evaluates your models and answers some questions we
asked you to answer.

▪ On Gradescope, submit concept questions.

Part of your grade will be from the accuracy on the private test
set. Will count 95% accuracy on the private test set as full credit
for the performance part of the assignment.

20

Groups You will be able to work on the Kaggle portion with a team of up
to 3 people. You can work alone if you choose, but we
recommend working with a team since that’s a great learning
experience!

If you work as a team, you can make a team submission on Kaggle
and submit your code/report answers on Gradescope together.

Concept portion should be done individually.

21

Clustering
Overview

22

Recap ▪ For the past 7 weeks, we have covered different supervised
learning algorithms

▪ Now, we’re going to explore unsupervised learning methods
where don’t have labels / outputs in your datasets anymore.

▪ Note that several of the concepts you learnt for supervised
learning, such as cross-validation, overfitting, bias-variance
tradeoff, accuracy, error, etc. no longer apply in unsupervised
learning!

23

Unsupervised
Learning

▪ A type of machine learning that detects underlying patterns in
unlabeled data.

▪ Examples of unsupervised learning tasks:
- Cluster similar articles together.

- Cluster gene sequences.

- Recommend items, searches, movies, etc.

24

25

ML Pipeline
(Supervised)

25

Training
Data

Pre-
Processing

ML
model

Quality
metric

Optimization
algorithm

y

x ŷ

⌃f- Historical Bias

- Representation Bias
- Measurement Bias

Clustering

26

SPORTS WORLD NEWS

Note that we’re not talking about learning user preferences (yet –
come back next week ☺).

Our case study is document retrieval. Given that someone read a
particular article, what similar articles would you recommend
(without personalization)?

Labeled Data
What if the labels are known? Given labeled training data.

Can do multi-class classification methods to predict label.

However, not all articles fit cleanly into one label.

Further, oftentimes real-world data doesn’t have labels.
27

Training set of labeled docs

SPORTS WORLD NEWS

ENTERTAINMENT SCIENCE

Example of
supervised learning

SPORTS

WORLD
NEWS

ENTERTAINMENT

SCIENCE TECHNOLOGY

Unlabeled
Data

▪ In many real world contexts, there aren’t clearly defined
labels so we won’t be able to do classification

▪ We will need to come up with methods that uncover
structure from the (unlabeled) input data 𝑋.

▪ Clustering is an automatic process of trying to find related
groups within the given dataset.

28

𝐼𝑛𝑝𝑢𝑡: 𝑥1, 𝑥2, … , 𝑥𝑛 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑧1, 𝑧2, … , 𝑧𝑛

Define
Clusters

In their simplest form, a cluster is defined by

▪ The location of its center (centroid)

▪ Shape and size of its spread

Clustering is the process of finding these clusters and assigning
each example to a particular cluster.

▪ 𝑥𝑖 gets assigned 𝑧𝑖 ∈ [1, 2,… , 𝑘]

▪ Usually based on closest centroid

Will define some kind of objective

function for a clustering that determines

how good the assignments are

▪ Based on distance of assigned
examples to each cluster.

▪ Close distance reflects strong similarity between datapoints.
29

When Might
This Work?

Clustering is easy when distance captures the clusters.

Ground Truth (not visible) Given Data

30

Not Always
Easy

There are many clusters that are harder to learn with this setup

▪ Distance does not determine clusters

31

sli.do #cs416

Group

Think of 1-2 problems that you might want to use clustering for.

For each problem, describe:

- Why unsupervised learning is the right approach.

- What the input features are for the clustering algorithm.

- What clusters you hypothesize would emerge.

32

2 min

K-Means
Clustering

33

K-Means
Clustering
Algorithm

▪ We define the criterion of assigning point to a cluster based
on its distance.

▪ Shorter distance => Better Clustering

34

Algorithm
Given a dataset of n datapoints and a particular choice of k

Step 0: Initialize cluster centroids randomly

Repeat until convergence:
Step 1: Assign each example to its closest cluster centroid
Step 2: Update the centroids to be the average of all the points

assigned to that cluster

Hyperparameter

Step 0 Start by choosing the initial cluster centroids

▪ A common default choice is to choose centroids 𝜇1, … , 𝜇𝑘
randomly

▪ Will see later that there are smarter ways of initializing

35

𝜇1

𝜇2

𝜇3

Step 1
Assign each example to its closest cluster centroid

For i = 1 to n

𝑧𝑖 ← argmin
𝑗∈[𝑘]

𝜇𝑗 − 𝑥𝑖
2

2

36

Step 2
Update the centroids to be the mean of points assigned to that cluster.

𝜇𝑗 =
σ𝑖=1
𝑛 𝟏 𝑧𝑖 = 𝑗 𝑥𝑖
σ𝑖=1
𝑛 𝟏 𝑧𝑖 = 𝑗

Computes center of mass for cluster!

37

m

Repeat
until
convergence

Repeat Steps 1 and 2 until convergence

38

Stopping
Conditions

39

• Cluster assignments haven’t changed

• Centroids haven’t changed

• Some number of max iterations have been passed

sli.do #cs416

Think

▪ What cluster assignment would result from these centroids?

40

1 min

Centroids (D)

(C)(B)(A)

sli.do #cs416

Group

41

1 min

Centroids (D)

(C)(B)(A)

▪ What cluster assignment would result from these centroids?

sli.do #cs416

Think

▪ In what direction would each of the centroids (roughly) move?

42

1 min

Cluster Assignments

(A) (B) (C)

(D)

sli.do #cs416

Group

43

2 min

Cluster Assignments

(A) (B) (C)

(D)

▪ In what direction would each of the centroids (roughly) move?

44

No more

changes

45

Different k gives different results

sli.do #cs416

Group

▪ You are clustering news articles using the features “# sport”
and “# injury.” How would you interpret these clusters?

▪ “This is a cluster of …[some characterization]… articles.”

46

1.5 min

Brain BreakBrain BreakBrain Break

47

Effect of
Initialization

48

sli.do #cs416

Group

What convergence guarantees do you think we will have with k-
means, given sufficient number of iterations?

▪ Converges to the global optimum

▪ Converges to a local optima

▪ None

49

1.5 min

Effects of
Initialization

Results heavily depend on initial centroids

50

Initialization Final Clusters

Effect of
initialization

What does it mean for something to converge to a local optima?

▪ Some initialization can be bad and affect the quality of clustering

▪ Initialization will greatly impact results!

51

Smart
Initializing w/
k-means++

Making sure the initialized centroids are “good” is critical to finding
quality local optima. Our purely random approach was wasteful
since it’s very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

1. Choose first cluster 𝜇1 from the data uniformly at random

2. For each datapoint 𝑥𝑖, compute the distance between 𝑥𝑖 and
the closest centroid from the current set of centroids (starting
with just 𝜇𝑖). Denote that distance 𝑑(𝑥𝑖).

3. Choose a new centroid from the remaining data points, where
the probability of 𝑥𝑖 being chosen is proportional to 𝑑 𝑥𝑖

2 .

4. Repeat 2 and 3 until we have selected 𝑘 centroids.

52

k-means++
Example

Start by picking a point at random

Then pick points proportional to their distances to their centroids

This tries to maximize the spread of the centroids!

53

k-means++
Pros / Cons

Pros

▪ Improves quality of local minima

▪ Faster convergence to local minima

Cons

▪ Computationally more expensive at beginning when
compared to simple random initialization

54

Assessing
Performance

55

Which Cluster?
Which clustering would I prefer?

Don’t know, there is no “right answer” in clustering .

Depends on the practitioner’s domain-specific knowledge and
interpretation of results!

56

Which Cluster?
Which clustering does k-means prefer?

k-means is trying to optimize the heterogeneity objective

argmin
𝑧,𝜇

෍

𝑗=1

𝑘

෍

𝑖=1

𝑛

𝟏 𝑧𝑖 = 𝑗 𝜇𝑗 − 𝑥𝑖
2

2

57

Coordinate
Descent

k-means is trying to minimize the heterogeneity objective

argmin
𝑧,𝜇

෍

𝑗=1

𝑘

෍

𝑖=1

𝑛

𝟏 𝑧𝑖 = 𝑗 𝜇𝑗 − 𝑥𝑖
2

2

Step 0: Initialize cluster centers

Repeat until convergence:

Step 1: Assign each example to its closest cluster centroid

Step 2: Update the centroids to be the mean of all the points
assigned to that cluster

Coordinate Descent alternates how it updates parameters to find
minima. On each of iteration of Step 1 and Step 2, heterogeneity
decreases or stays the same.

=> Will converge in finite time
58

sli.do #cs416

Think

Consider training k-means to convergence for different values
of k. Which of the following graphs shows how the
heterogeneity objective will change based on the value of k?

59

1 min

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

A B

C D

sli.do #cs416

Group

Consider training k-means to convergence for different values
of k. Which of the following graphs shows how the
heterogeneity objective will change based on the value of k?

60

2 mins

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

Lo
w

es
t o

bj
ec

tiv
e

va
lu

e

A B

C D

How to
Choose k?

No right answer! Depends on your application.

▪ General, look for the “elbow” in the graph

Note: You will usually have to run k-means multiple times for each k
61

of clusters k

Lo
w

e
st

 p
o

ss
ib

le
cl

u
st

e
r

h
et

e
ro

ge
n

e
it

y

Cluster
shape

62

• k-means works well for well-separated hyper-spherical
clusters of the same size

Clustering
vs
Classification

▪ Clustering looks like we assigned labels (by coloring or numbering
different groups) but we didn’t use any labeled data.

▪ In clustering, the “labels” don’t have meaning. To give meaning to
the labels, human inputs is required

▪ Classification learns from minimizing the error between a
prediction and an actual label.

▪ Clustering learns by minimizing the distance between points in a
cluster.

▪ Classification quality metrics (accuracy / loss) do not apply to
clustering (since there is no label).

▪ You can’t use validation set / cross-validation to choose the best
choice of k for clustering.

63

Recap ▪ Differences between classification and clustering

▪ What types of clusters can be formed by k-means

▪ K-means algorithm

▪ Convergence of k-means

▪ How to choose k

▪ Better initialization using k-means++

64

	Slide 1: CSE/STAT 416 k-means Clustering Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington July 29, 2024 ❓ Questions? Raise hand
	Slide 2: TF-IDF
	Slide 3: 1.5 min
	Slide 4: Some Issues
	Slide 5: 1. How to choose line?
	Slide 6: Some Issues
	Slide 7
	Slide 8: More Bins
	Slide 9: LSH with Many Bins
	Slide 10: LSH Example
	Slide 11: Improve Quality
	Slide 12: Locality Sensitive Hashing (LSH)
	Slide 13: Higher Dimensions
	Slide 14: Recap
	Slide 15: Curse of Dimensionality
	Slide 16: High Dimensions
	Slide 17: Even Weirder
	Slide 18: Practicalities
	Slide 19: HW5 – ML Practice with Kaggle
	Slide 20: Submission and Grading
	Slide 21: Groups
	Slide 22: Clustering Overview
	Slide 23: Recap
	Slide 24: Unsupervised Learning
	Slide 25: ML Pipeline (Supervised)
	Slide 26: Clustering
	Slide 27: Labeled Data
	Slide 28: Unlabeled Data
	Slide 29: Define Clusters
	Slide 30: When Might This Work?
	Slide 31: Not Always Easy
	Slide 32: 2 min
	Slide 33: K-Means Clustering
	Slide 34: K-Means Clustering Algorithm
	Slide 35: Step 0
	Slide 36: Step 1
	Slide 37: Step 2
	Slide 38: Repeat until convergence
	Slide 39: Stopping Conditions
	Slide 40: 1 min
	Slide 41: 1 min
	Slide 42: 1 min
	Slide 43: 2 min
	Slide 44
	Slide 45
	Slide 46: 1.5 min
	Slide 47
	Slide 48: Effect of Initialization
	Slide 49: 1.5 min
	Slide 50: Effects of Initialization
	Slide 51: Effect of initialization
	Slide 52: Smart Initializing w/ k-means++
	Slide 53: k-means++ Example
	Slide 54: k-means++ Pros / Cons
	Slide 55: Assessing Performance
	Slide 56: Which Cluster?
	Slide 57: Which Cluster?
	Slide 58: Coordinate Descent
	Slide 59: 1 min
	Slide 60: 2 mins
	Slide 61: How to Choose k?
	Slide 62: Cluster shape
	Slide 63: Clustering vs Classification
	Slide 64: Recap

