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TF-IDF Goal: Emphasize important words

▪ Appear frequently in the document (common locally)

▪ Appears rarely in the corpus (rare globally)

Do a pair-wise multiplication to compute the TF-IDF for each 
word

▪ Words that appear in every document will have a small IDF 
making the TF-IDF small! 
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tf * idf

Term frequency =

Inverse doc freq. = log
# docs

1 + # docs using word

word counts



pollev.com/cs416

ThinkThinkThink

What is the 𝑇𝐹 − 𝐼𝐷𝐹(“𝑟𝑎𝑖𝑛”, 𝐷𝑜𝑐1) with the following documents 
(assume standard pre-processing)

▪ Doc 1: It is going to rain today.

▪ Doc 2: Today I am not going outside.

▪ Doc 3: I am going to watch the season premiere.
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1.5 min



Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into 
separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…
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1. How to 
choose line?

Wild Idea: Choose the line randomly!

▪ Choose a slope randomly between 0 and 90 degrees

How bad can randomly picking it be?

▪ If two points have a small cosine distance, it is unlikely that 
we will split them into different bins!

5

#
aw

fu
l

0 1 2 3 4 …

0

1

2

3

4

…

θxy

Bins are 
the same

Bins are 
the same

Bins are 
different

If θxy is small (x,y close), 
unlikely to be placed into 

separate bins

x

y



Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into 
separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…
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Brain BreakBrain BreakBrain Break
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More Bins Can reduce search cost by adding more lines, increasing the 
number of bins.

For example, if we use 3 lines, we can make more bins!
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LSH with 
Many Bins

Create a table of all data points and calculate their bin index 
based on some chosen lines. Store points in hash table indexed 
by all bin indexes

When searching for a point 𝑥𝑞: 

▪ Find its bin index based on the lines

▪ Only search over the points in that bin
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Bin [0 0 0] 
= 0
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x3 = [3, 0] 1 1 1 1 1 1
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LSH Example Imagine my query point was (2, 2)

This has bin index [0 1 0] 

By using multiple bins, we have reduced the search time! 

However, it’s more likely that we separate points from their true 
nearest neighbors since we do more splits 

▪ Often with approximate methods, there is a tradeoff between 
speed and accuracy. 
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Improve 
Quality

The nice thing about LSH is we can actually tune this tradeoff by 
looking at nearby bins. If we spend longer searching, we are likely 
to find a better answer.

What does ”nearby” mean for bins?

In practice, set some time “budget” and 
keep searching nearby bins until budget
runs out 11
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Locality 
Sensitive 
Hashing 
(LSH)

Pre-Processing Algorithm

▪ Draw ℎ lines randomly

▪ For each data point, compute 𝑆𝑐𝑜𝑟𝑒 𝑥𝑖 for each line

▪ Translate the scores into binary indices

▪ Use binary indices as a key to store the point in a hash table

Querying LSH

▪ For query point 𝑥𝑞 compute 𝑆𝑐𝑜𝑟𝑒(𝑥𝑞) for each of the ℎ lines

▪ Translate scores into binary indices. Lookup all data points 
that have the same key.

▪ Do exact nearest neighbor search just on this bin.

▪ If there is more time in the computation budget, go look at 
nearby bins until this budget runs out.
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Higher 
Dimensions

Pick random hyper-plane to separate points for points in higher 
dimensions. 

Unclear how to pick ℎ for LSH and you can’t do cross-validation 
here (why?)

▪ Generally people use ℎ ≈ log(𝑑)
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Recap Theme: Use local methods for classification and regression and 
speed up nearest neighbor search with approximation methods.

Ideas:

▪ 1-NN Regression and Classification

▪ k-NN Regression and Classification 

▪ Weighted k-NN vs Kernel Regression

▪ Locality Sensitive Hashing
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Curse of 
Dimensionality
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High 
Dimensions

Methods like k-NN and k-means that rely on computing distances 
start to struggle in high dimensions.

As the number of dimensions grow, the data gets sparser!

Need more data to make sure you cover all the space in high dim.
16



Even 
Weirder

It’s believable with more dimensions the data becomes more 
sparse, but what’s even weirder is the sparsity is not uniform!

As 𝐷 increases, the “mass” of the space goes towards the corners.

▪ Most of the points aren’t in the center.

▪ Your nearest neighbors start looking like your farthest 
neighbors!
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Practicalities Have you pay attention to the number of dimensions

▪ Very tricky if 𝑛 < 𝐷

▪ Can run into some strange results if 𝐷 is very large

Later, we will talk about ways of trying to do dimensionality 
reduction in order to reduce the number of dimensions here.
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HW5 – ML 
Practice with 
Kaggle

Kaggle is a website that hosts ML competitions. Very popular 
among people trying to learn more about ML! Let’s you practice a 
lot of real-world ML skills on challenging problems.

About halfway through the course, want to give you a chance to 
apply what you’ve learned in the real-world! HW5 will be hosted 
as an internal Kaggle competition.

TAs in section tomorrow will walk through how to do 
submissions, but all instructions are on the Kaggle website (linked 
from HW spec).

NOT graded as a competition. The leaderboard is just for fun, 
and we will provide a small amount of EC to the top 3 teams.
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Submission 
and Grading

You will need to submit three things:

▪ On Kaggle, submit your predictions for the test set

▪ On Gradescope, submit your Jupyter Notebook that 
trains/evaluates your models and answers some questions we 
asked you to answer.

▪ On Gradescope, submit concept questions.

Part of your grade will be from the accuracy on the private test 
set. Will count 95% accuracy on the private test set as full credit 
for the performance part of the assignment.
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Groups You will be able to work on the Kaggle portion with a team of up 
to 3 people. You can work alone if you choose, but we 
recommend working with a team since that’s a great learning 
experience! 

If you work as a team, you can make a team submission on Kaggle 
and submit your code/report answers on Gradescope together.

Concept portion should be done individually. 
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Clustering 
Overview

22



Recap ▪ For the past 7 weeks, we have covered different supervised 
learning algorithms

▪ Now, we’re going to explore unsupervised learning methods 
where don’t have labels / outputs in your datasets anymore.

▪ Note that several of the concepts you learnt for supervised 
learning, such as cross-validation, overfitting, bias-variance 
tradeoff, accuracy, error, etc. no longer apply in unsupervised 
learning!
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Unsupervised 
Learning

▪ A type of machine learning that detects underlying patterns in 
unlabeled data.

▪ Examples of unsupervised learning tasks:
- Cluster similar articles together.

- Cluster gene sequences.

- Recommend items, searches, movies, etc.
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(Supervised)
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Clustering

26

SPORTS WORLD NEWS

Note that we’re not talking about learning user preferences (yet –
come back next week ☺ ). 

Our case study is document retrieval. Given that someone read a 
particular article, what similar articles would you recommend 
(without personalization)?



Labeled Data
What if the labels are known? Given labeled training data.

Can do multi-class classification methods to predict label.

However, not all articles fit cleanly into one label.

Further, oftentimes real-world data doesn’t have labels.
27

Training set of labeled docs

SPORTS WORLD NEWS
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Example of
supervised learning
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Unlabeled 
Data

▪ In many real world contexts, there aren’t clearly defined 
labels so we won’t be able to do classification

▪ We  will need to come up with methods that uncover 
structure from the (unlabeled) input data 𝑋.

▪ Clustering is an automatic process of trying to find related 
groups within the given dataset.
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Define 
Clusters

In their simplest form, a cluster is defined by

▪ The location of its center (centroid)

▪ Shape and size of its spread

Clustering is the process of finding these clusters and assigning 
each example to a particular cluster. 

▪ 𝑥𝑖 gets assigned 𝑧𝑖 ∈ [1, 2,… , 𝑘]

▪ Usually based on closest centroid

Will define some kind of objective 

function for a clustering that determines 

how good the assignments are 

▪ Based on distance of assigned
examples to each cluster.

▪ Close distance reflects strong similarity between datapoints.
29



When Might 
This Work?

Clustering is easy when distance captures the clusters.

Ground Truth (not visible)                               Given Data
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Not Always 
Easy

There are many clusters that are harder to learn with this setup

▪ Distance does not determine clusters
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sli.do #cs416

Group

Think of 1-2 problems that you might want to use clustering for. 

For each problem, describe:

- Why unsupervised learning is the right approach.

- What the input features are for the clustering algorithm.

- What clusters you hypothesize would emerge.

32

2 min



K-Means 
Clustering

33



K-Means
Clustering
Algorithm

▪ We define the criterion of assigning point to a cluster based 
on its distance.

▪ Shorter distance => Better Clustering
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Algorithm
Given a dataset of n datapoints and a particular choice of k

Step 0: Initialize cluster centroids randomly 

Repeat until convergence:
Step 1: Assign each example to its closest cluster centroid
Step 2: Update the centroids to be the average of all the points

assigned to that cluster

Hyperparameter



Step 0 Start by choosing the initial cluster centroids 

▪ A common default choice is to choose centroids 𝜇1, … , 𝜇𝑘
randomly

▪ Will see later that there are smarter ways of initializing

35

𝜇1

𝜇2

𝜇3



Step 1
Assign each example to its closest cluster centroid

For  i = 1 to n

𝑧𝑖 ← argmin
𝑗∈[𝑘]

𝜇𝑗 − 𝑥𝑖
2

2
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Step 2
Update the centroids to be the mean of points assigned to that cluster.

𝜇𝑗 =
σ𝑖=1
𝑛 𝟏 𝑧𝑖 = 𝑗 𝑥𝑖
σ𝑖=1
𝑛 𝟏 𝑧𝑖 = 𝑗

Computes center of mass for cluster!

37
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Repeat
until 
convergence

Repeat Steps 1 and 2 until convergence
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Stopping 
Conditions

39

• Cluster assignments haven’t changed

• Centroids haven’t changed

• Some number of max iterations have been passed



sli.do #cs416

Think

▪ What cluster assignment would result from these centroids?

40

1 min

Centroids (D)

(C)(B)(A)



sli.do #cs416

Group
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1 min

Centroids (D)

(C)(B)(A)

▪ What cluster assignment would result from these centroids?



sli.do #cs416

Think

▪ In what direction would each of the centroids (roughly) move?
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1 min

Cluster Assignments

(A) (B) (C)

(D)



sli.do #cs416

Group
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2 min

Cluster Assignments

(A) (B) (C)

(D)

▪ In what direction would each of the centroids (roughly) move?



44

No more 

changes
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Different k gives different results



sli.do #cs416

Group

▪ You are clustering news articles using the features “# sport” 
and “# injury.” How would you interpret these clusters?

▪ “This is a cluster of …[some characterization]… articles.”

46

1.5 min



Brain BreakBrain BreakBrain Break
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Effect of 
Initialization

48



sli.do #cs416

Group

What convergence guarantees do you think we will have with k-
means, given sufficient number of iterations?

▪ Converges to the global optimum

▪ Converges to a local optima

▪ None

49

1.5 min



Effects of 
Initialization

Results heavily depend on initial centroids

50

Initialization Final Clusters



Effect of 
initialization

What does it mean for something to converge to a local optima?

▪ Some initialization can be bad and affect the quality of clustering

▪ Initialization will greatly impact results!
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Smart 
Initializing w/ 
k-means++

Making sure the initialized centroids are “good” is critical to finding 
quality local optima. Our purely random approach was wasteful 
since it’s very possible that initial centroids start close together.

Idea: Try to select  a set of points farther away from each other.

k-means++ does a slightly smarter random initialization 

1. Choose first cluster 𝜇1 from the data uniformly at random

2. For each datapoint 𝑥𝑖, compute the distance between 𝑥𝑖 and 
the closest centroid from the current set of centroids (starting 
with just 𝜇𝑖). Denote that distance 𝑑(𝑥𝑖).

3. Choose a new centroid from the remaining data points, where 
the probability of 𝑥𝑖 being chosen is proportional to 𝑑 𝑥𝑖

2 .

4. Repeat 2 and 3 until we have selected 𝑘 centroids.
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k-means++ 
Example

Start by picking a point at random

Then pick points proportional to their distances to their centroids

This tries to maximize the spread of the centroids!
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k-means++
Pros / Cons

Pros

▪ Improves quality of local minima 

▪ Faster convergence to local minima

Cons

▪ Computationally more expensive at beginning when 
compared to simple random initialization
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Assessing 
Performance

55



Which Cluster?
Which clustering would I prefer?

Don’t know, there is no “right answer” in clustering .

Depends on the practitioner’s domain-specific knowledge and 
interpretation of results!

56



Which Cluster?
Which clustering does k-means prefer?

k-means is trying to optimize the heterogeneity objective

argmin
𝑧,𝜇

෍

𝑗=1

𝑘

෍

𝑖=1

𝑛

𝟏 𝑧𝑖 = 𝑗 𝜇𝑗 − 𝑥𝑖
2

2
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Coordinate 
Descent

k-means is trying to minimize the heterogeneity objective

argmin
𝑧,𝜇

෍

𝑗=1

𝑘

෍

𝑖=1

𝑛

𝟏 𝑧𝑖 = 𝑗 𝜇𝑗 − 𝑥𝑖
2

2

Step 0: Initialize cluster centers 

Repeat until convergence:

Step 1: Assign each example to its closest cluster centroid

Step 2: Update the centroids to be the mean of all the points
assigned to that cluster

Coordinate Descent alternates how it updates parameters to find 
minima. On each of iteration of Step 1 and Step 2, heterogeneity 
decreases or stays the same.

=> Will converge in finite time
58



sli.do #cs416

Think

Consider training k-means to convergence for different values 
of k. Which of the following graphs shows how the 
heterogeneity objective will change based on the value of k?
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sli.do #cs416

Group

Consider training k-means to convergence for different values 
of k. Which of the following graphs shows how the 
heterogeneity objective will change based on the value of k?
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2 mins
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How to 
Choose k?

No right answer! Depends on your application.

▪ General, look for the “elbow” in the graph

Note: You will usually have to run k-means multiple times for each k
61
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Cluster 
shape

62

• k-means works well for well-separated hyper-spherical
clusters of the same size



Clustering
vs
Classification

▪ Clustering looks like we assigned labels (by coloring or numbering 
different groups) but we didn’t use any labeled data.

▪ In clustering, the “labels” don’t have meaning. To give meaning to 
the labels, human inputs is required

▪ Classification learns from minimizing the error between a 
prediction and an actual label. 

▪ Clustering learns by minimizing the distance between points in a 
cluster.

▪ Classification quality metrics (accuracy / loss) do not apply to 
clustering (since there is no label).

▪ You can’t use validation set / cross-validation to choose the best 
choice of k for clustering.
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Recap ▪ Differences between classification and clustering

▪ What types of clusters can be formed by k-means

▪ K-means algorithm

▪ Convergence of k-means

▪ How to choose k

▪ Better initialization using k-means++
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