CSE/STAT 416

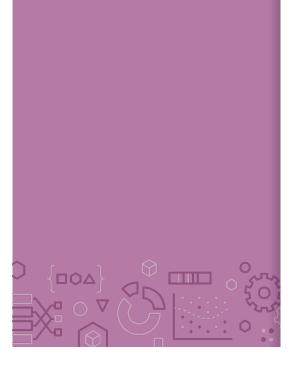
Naïve Bayes and Decision Trees

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

April 24, 2024

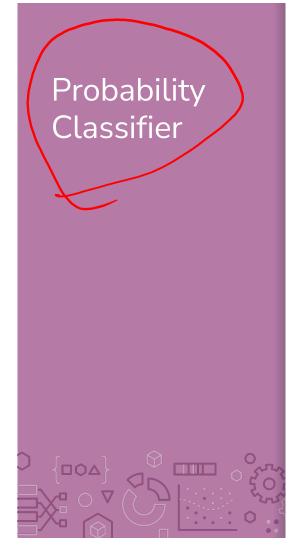
Questions? Raise hand or sli.do #cs416
Before Class: Pro-rain or anti-rain person?
Listening to: lecture

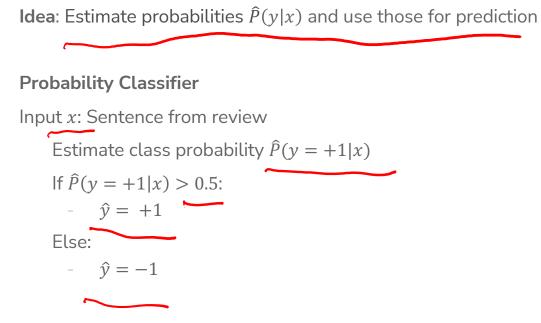
Administrivia



- Midterm due tonight
- Post questions on Edstem (Private post as needed)

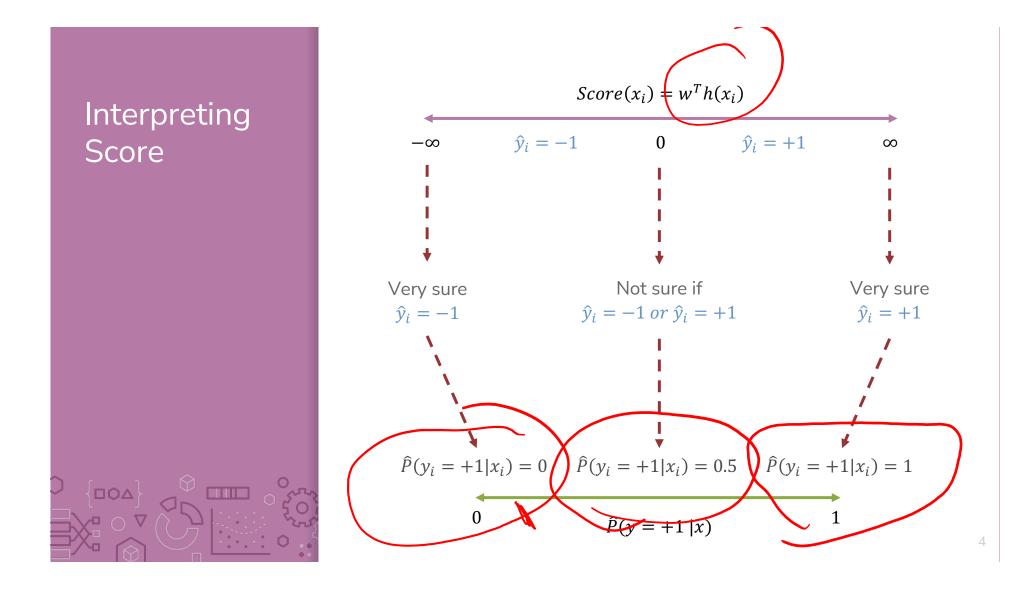
- HW3 out Friday

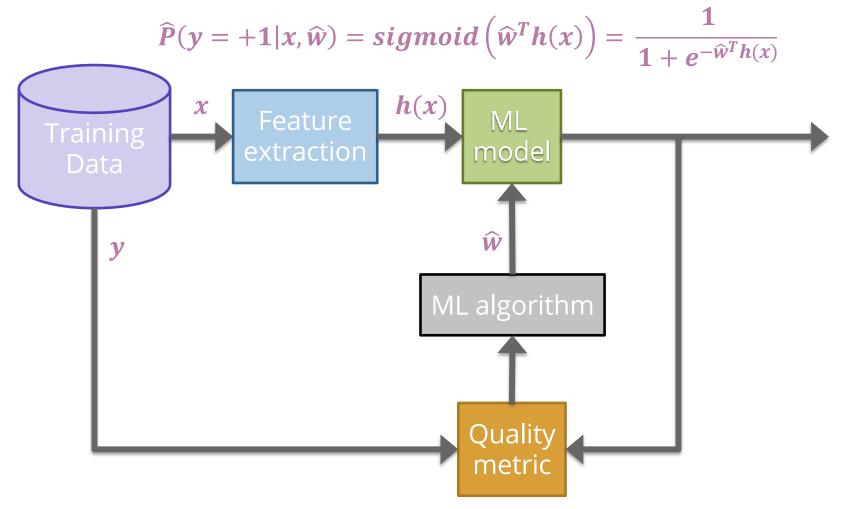




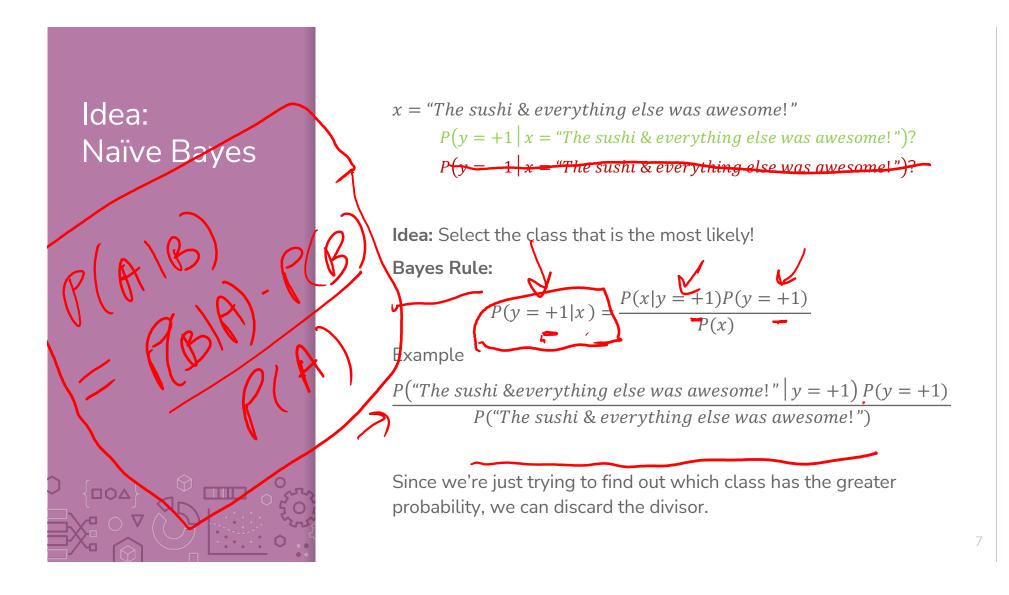
Notes:

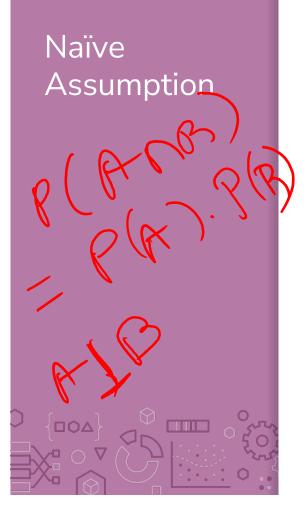
Estimating the probability improves interpretability





Naïve Bayes





Idea: Select the class with the highest probability!Problem: We have not seen the sentence before.Assumption: Words are independent from each other.

 $\checkmark x =$ "The sushi & everything else was awesome!"

 $\frac{P("The sushi \& everything else was awesome!" | y = +1) P(y = +1)}{P("The sushi \& everything else was awesome!")}$

 $\begin{array}{l} P(``The sushi \& everything else was awesome! " | y = +1) \\ = P(The | y=+1) * P(sushi | y = +1) * P(\& | y = +1) \\ * P(everything | y = +1) * P(else | y = +1) * P(was | y = +1) \\ * P(awesome | y = +1) \end{array}$

Compute Probabilities

How do we compute something like

navenos

the recitors

How do we compute something like

P("awesome" | y = +1)?# Occurrences of anerone > IF sold works

P(y = +1)?

If a feature is missing in a class everything becomes zero. P("The sushi & everything else was awesome!" | y = +1) = P(The | y=+1) * P(sushi | y = +1) * P(&|y = +1) * P(everything|y = +1) * P(else|y = +1) * P(was|y = +1) * P(awesome|y = +1)

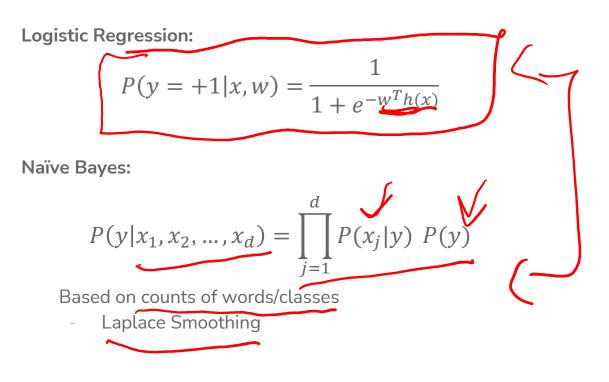
Solutions?

Take the log (product becomes a sum).

Generally define log(0) = 0 in these contexts

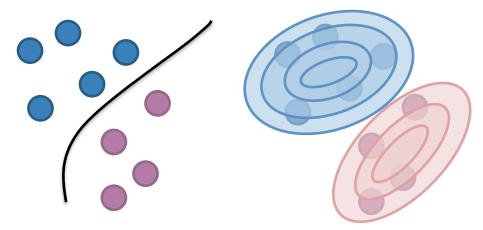
Laplacian Smoothing (adding a constant to avoid multiplying by zero)

Compare Models



Compare Models

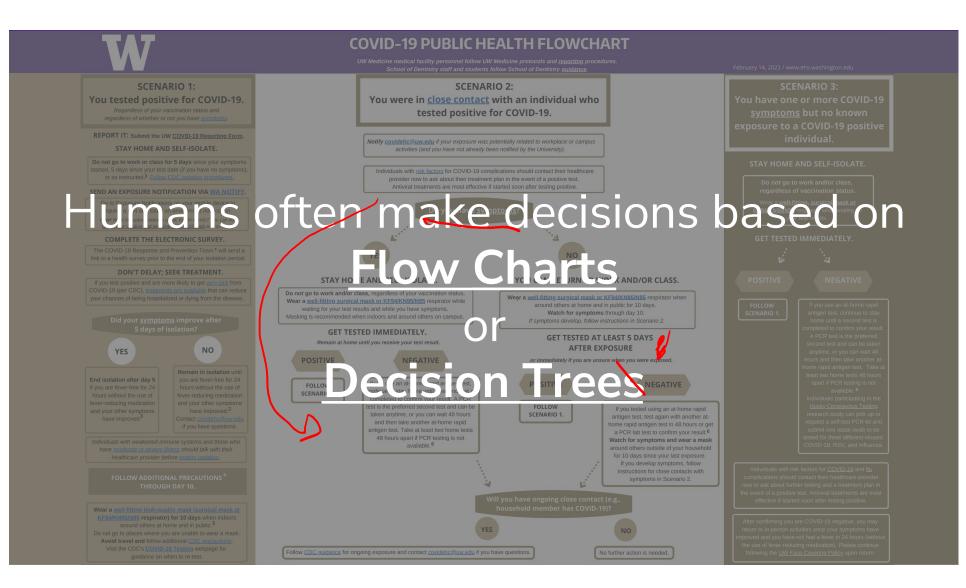
Generative: defines a model for generating x (e.g. Naïve Bayes) Discriminative: only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)



Sido Group $\mathcal{L}_{\mathcal{L}}^{\mathcal{R}}\mathcal{L}$ 2 min $\mathcal{H}^{\mathcal{R}}$	Recap: What is the predicted class for this sentence assuming we have the following training set (no Laplace Smoothing). "he is not cool" He : S a d (a d H) + H + H + H + H + H + H + H + H + H				
	Sentence	Label	= 2/1 + 3/11 + 1/1		
sli.do #cs416	this dog is cute	Positive [~]			
	he does not like dogs	Negative 🛩			
	he is not bad he is cool	Positive ,	11.3		

Decision Trees

14



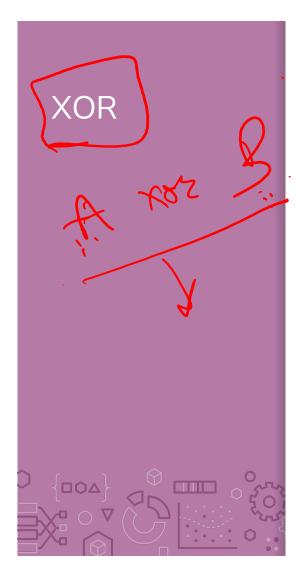
Parametric vs. Non-Parametric Methods

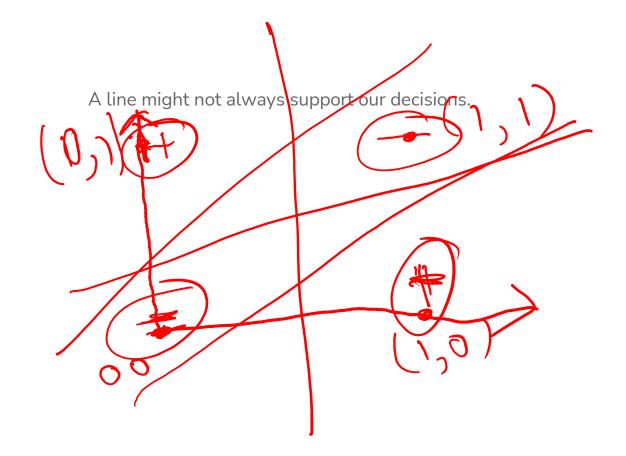
Parametric Methods: make assumptions about the data distribution

- Linear Regression \Rightarrow assume the data is linear
- Logistic Regression ⇒ assume probability has the shape of of a logistic curve and linear decision boundary
- Those assumptions result in a <u>parameterized</u> function family. Our learning task is to learn the parameters.

Non-Parametric Methods: (mostly) don't make assumptions about the data distribution

- Decision Trees, k-NN (soon)
- We're still learning something, but not the parameters to a function family that we're assuming describes the data.
- Useful when you don't want to (or can't) make assumptions about the data distribution.





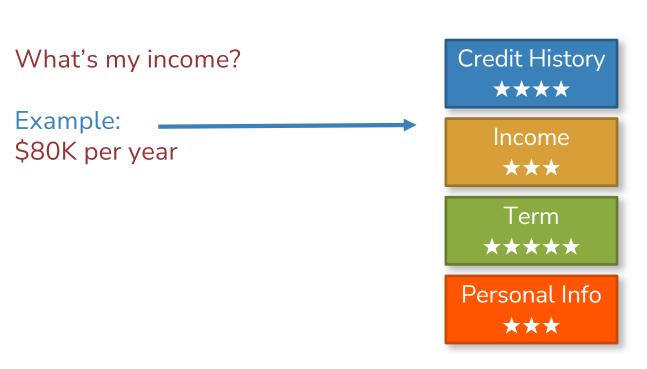
What makes a loan risky?

Credit history explained

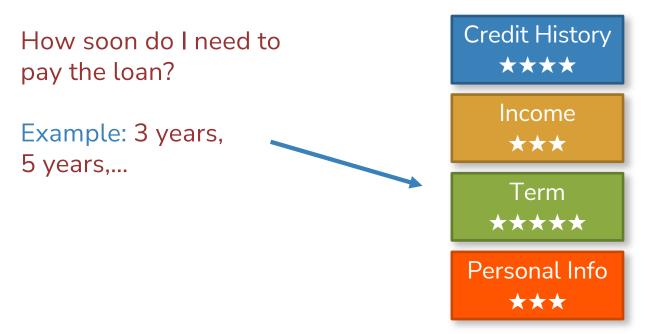
Did I pay previous loans on time?

Example: excellent, good, or fair

Income



Loan terms



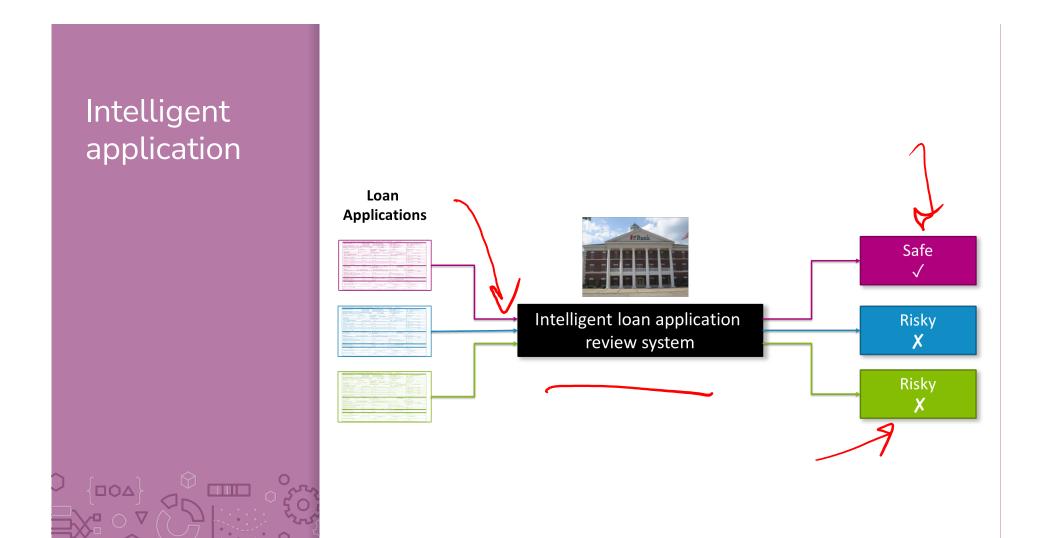
Personal information

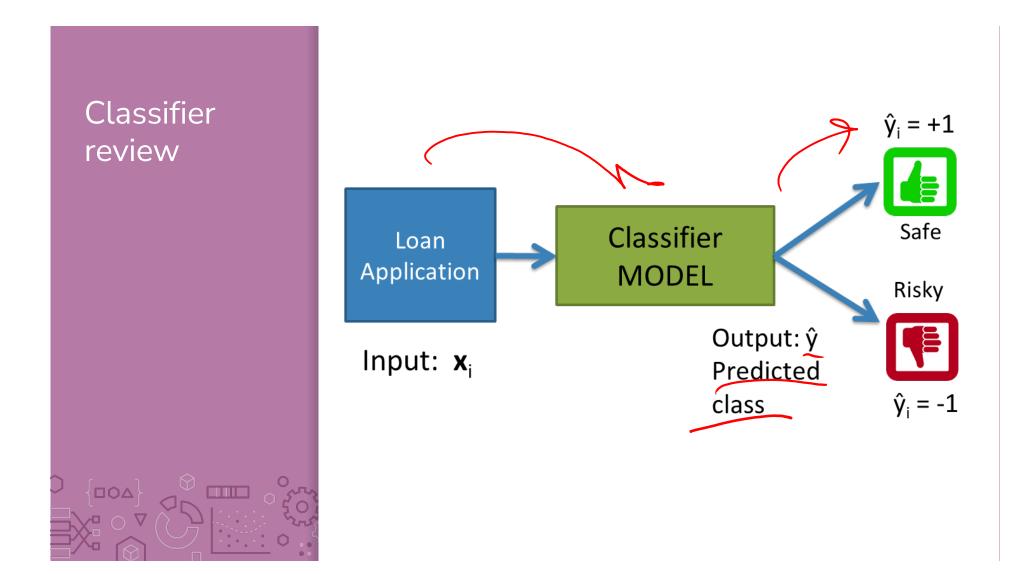
Age, reason for the loan, marital status,...

Example: Home loan for a married couple

Credit History **** Income *** Term ****

Personal Info ★★★





Setup

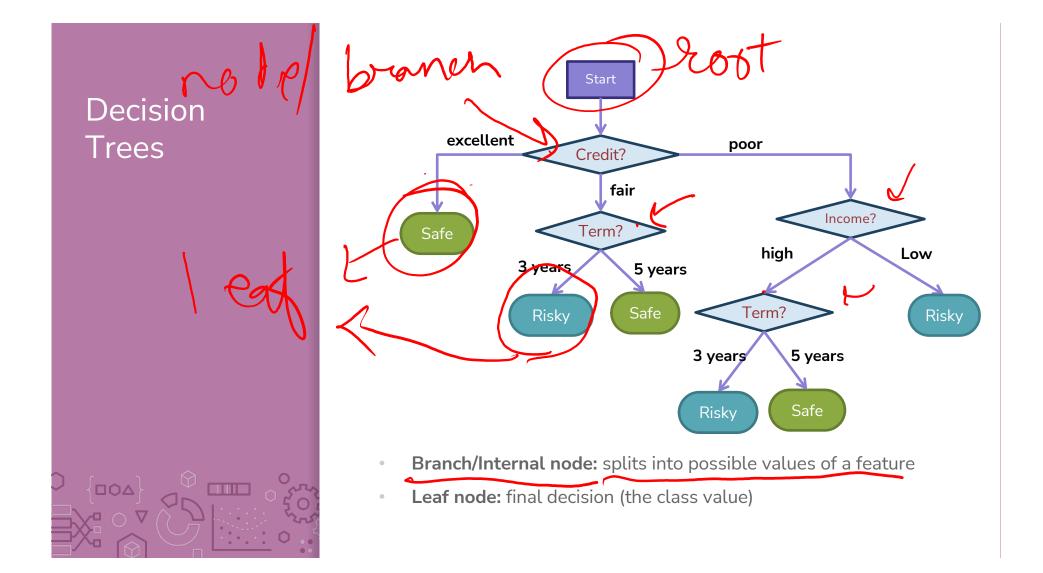
Data (N observations, 3 features)

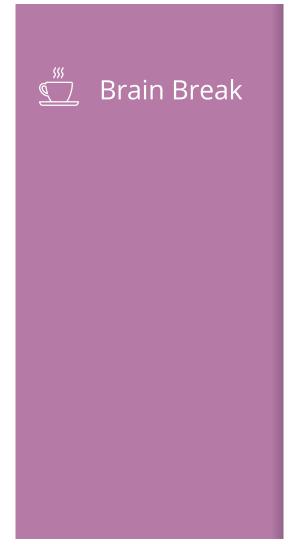
		L	
Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Evaluation: classification error

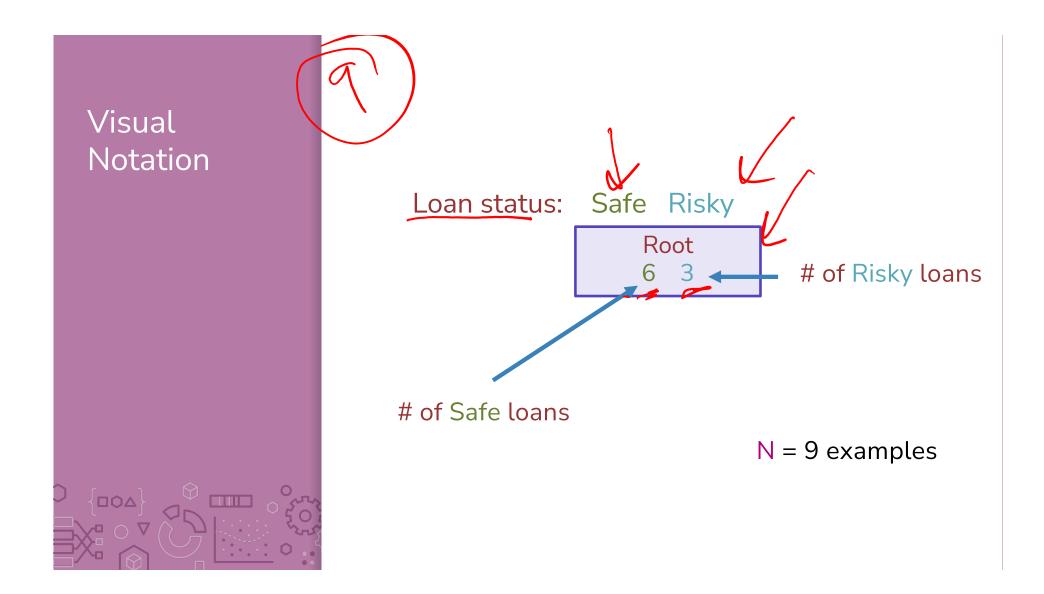
Many possible decisions: number of trees grows exponentially!

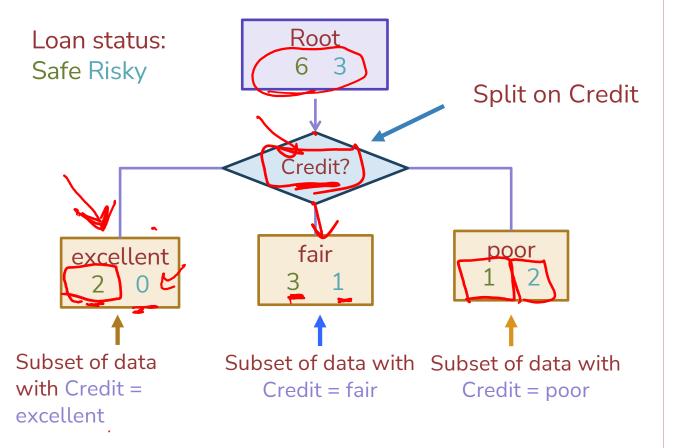
With our discussion of bias and fairness from last week, discuss the potential biases and fairness concerns that might be present in our dataset about loan safety.



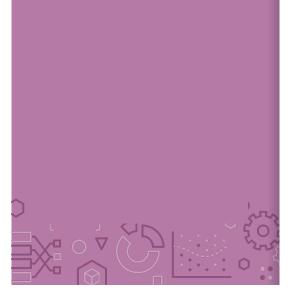


Growing Trees

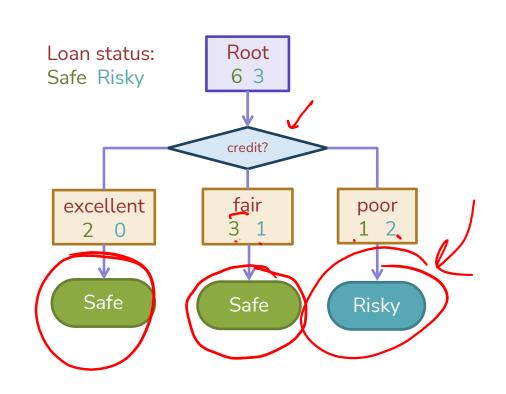




Making predictions

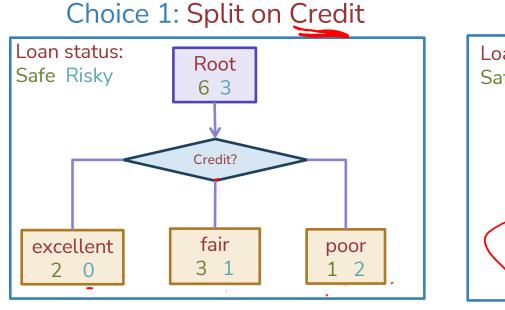


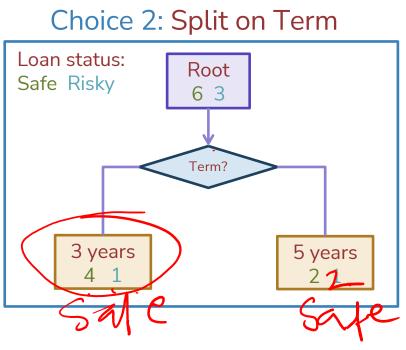
For each leaf node, set \hat{y} = majority value



How do we select the best feature?

• Select the split with lowest classification error

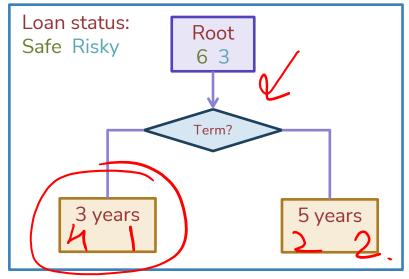




Calculate the node values.

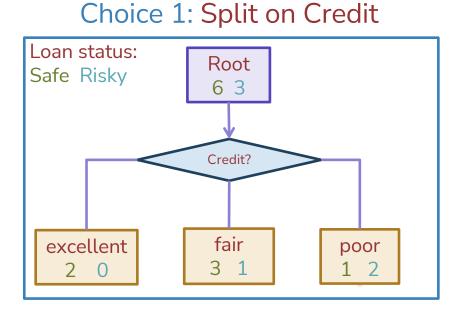
Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

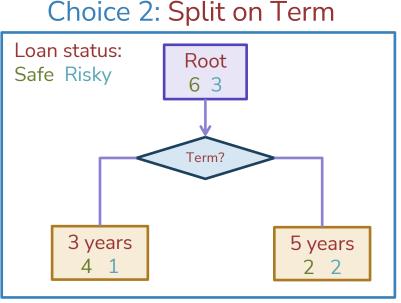
Choice 2: Split on Term



How do we select the best feature?

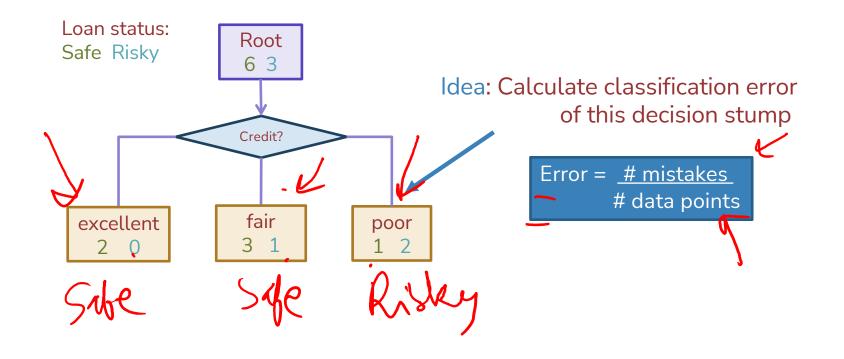
Select the split with lowest classification error





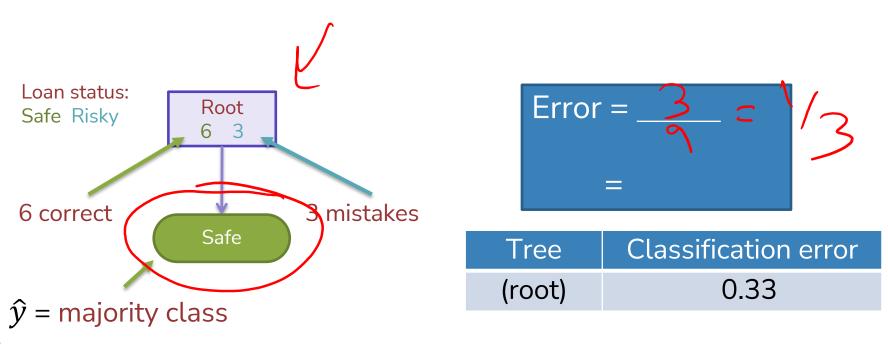
Choice 2: Split on Term

How do we measure effectiveness of a split?



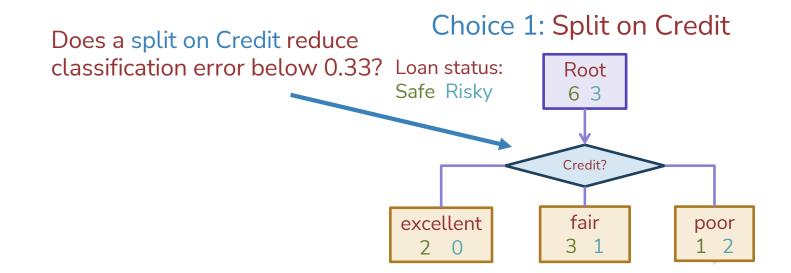
Calculating classification error

Step 1: \hat{y} = class of majority of data in node Step 2: Calculate classification error of predicting \hat{y} for this data

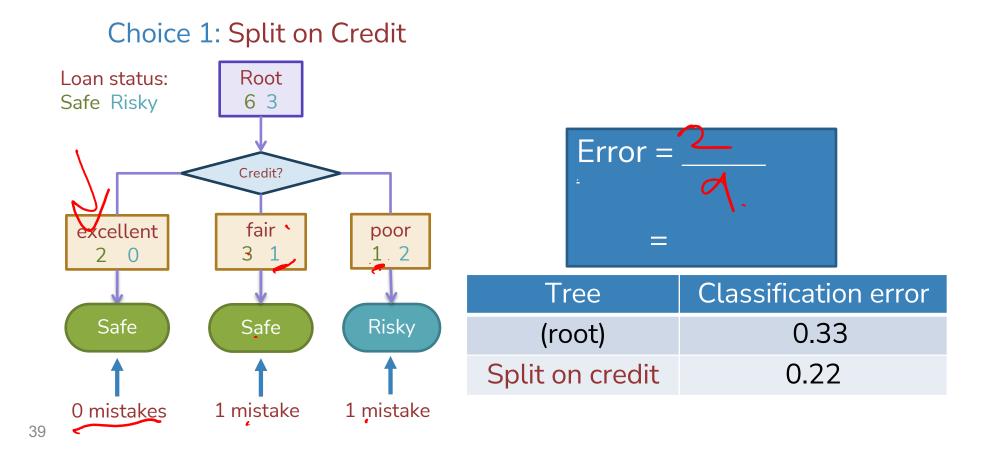


37

Choice 1: Split on Credit history?

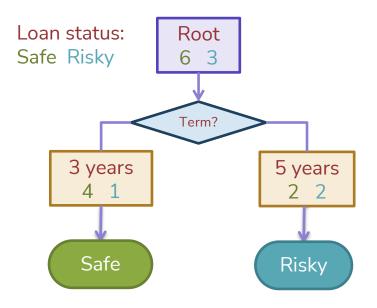


Split on Credit: Classification error



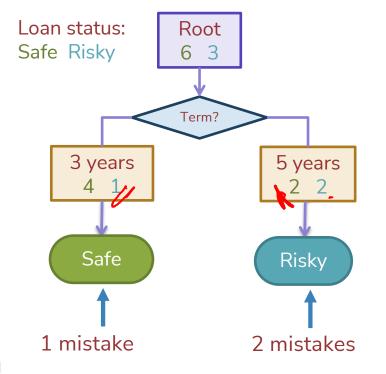
Choice 2: Split on Term?

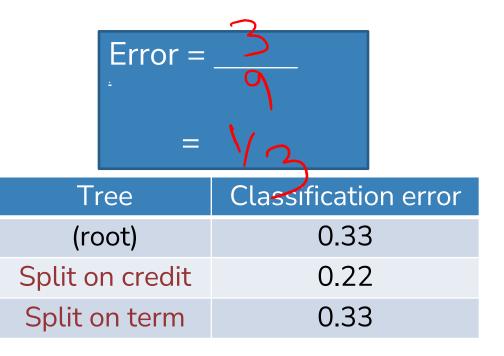
Choice 2: Split on Term

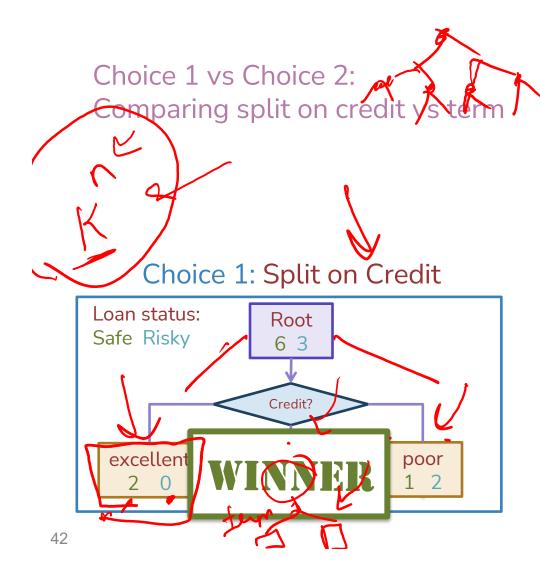


Evaluating the split on Term

Choice 2: Split on Term

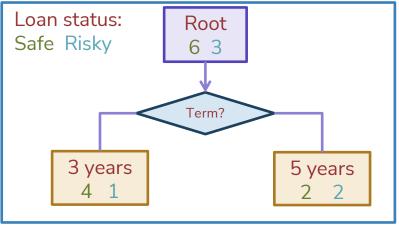






Tree	Classification	
	error	
(root)	0.33 ′	
split on credit	0.22 🛰	
split on loan term	0.33 🔒	

Choice 2: Split on Term



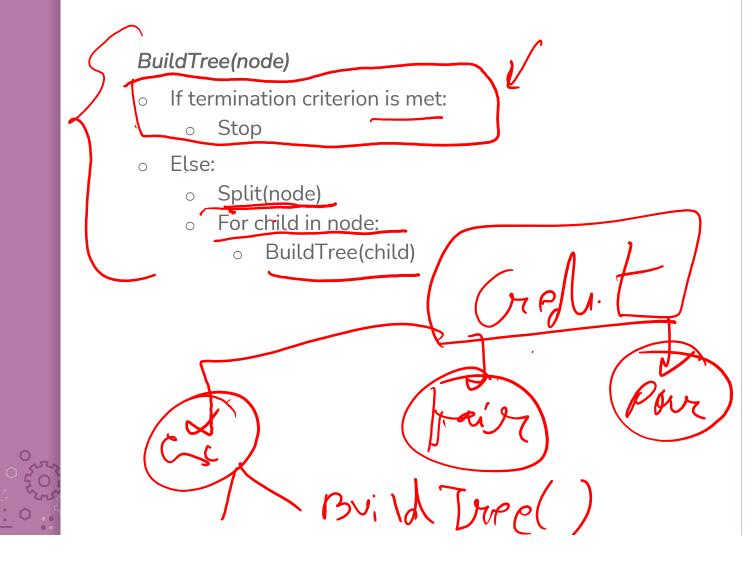
Split Selection

Split(node)

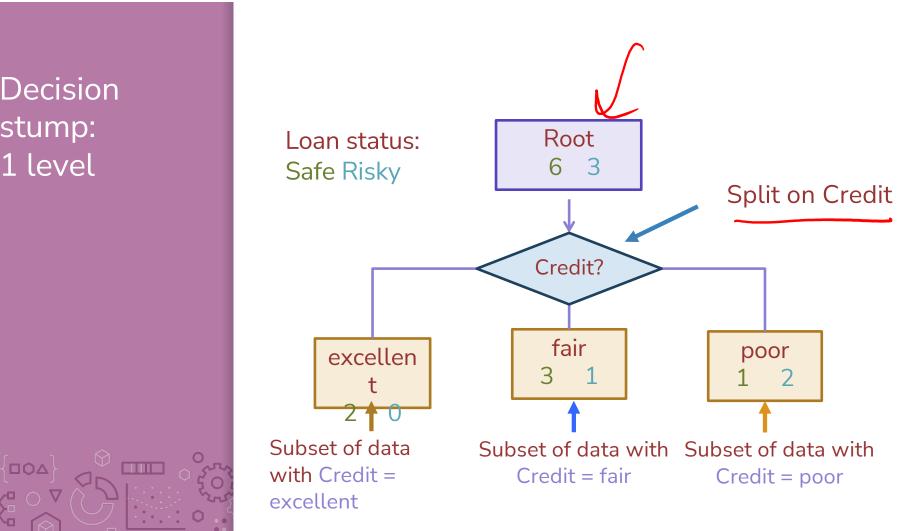
- Given *M*, the subset of training data at a node
- For each (remaining) feature $h_j(x)$:
 - Split data M on feature $h_i(x)$
 - Compute the classification error for the split
- Chose feature $h_j^*(x)$ with the lowest classification error

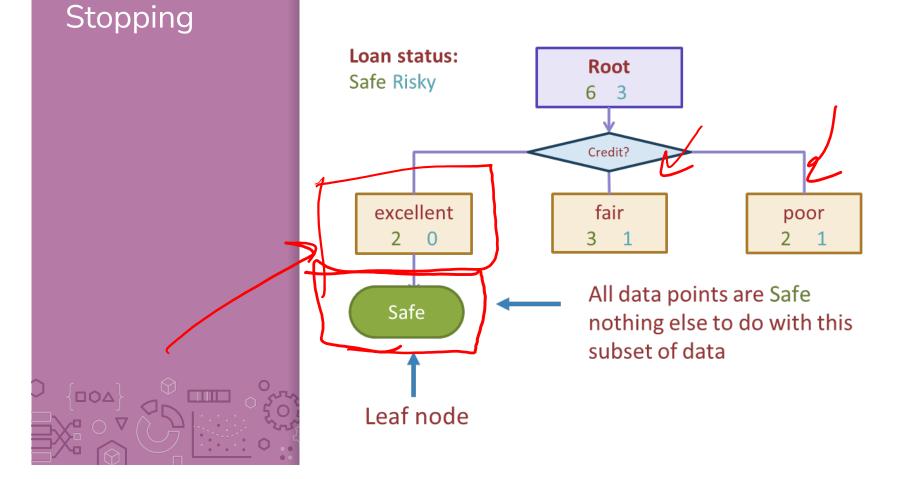
Greedy & Recursive Algorithm

 $\{\Box \Diamond \Delta\}$



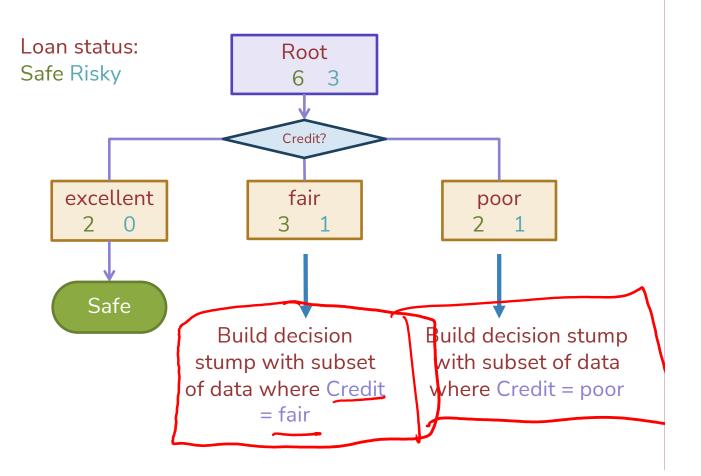
Decision stump: 1 level



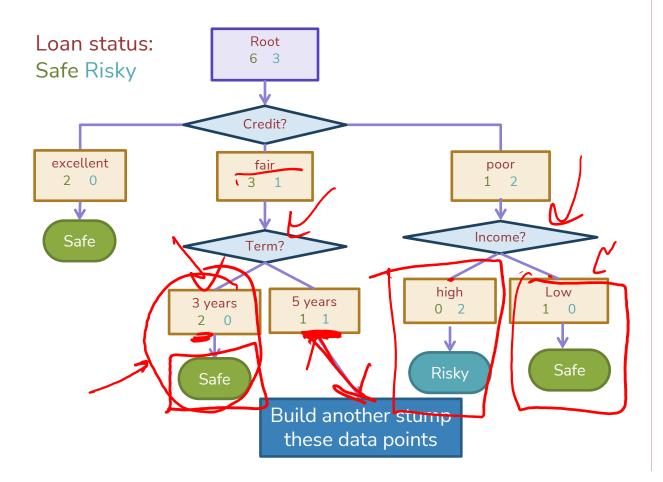


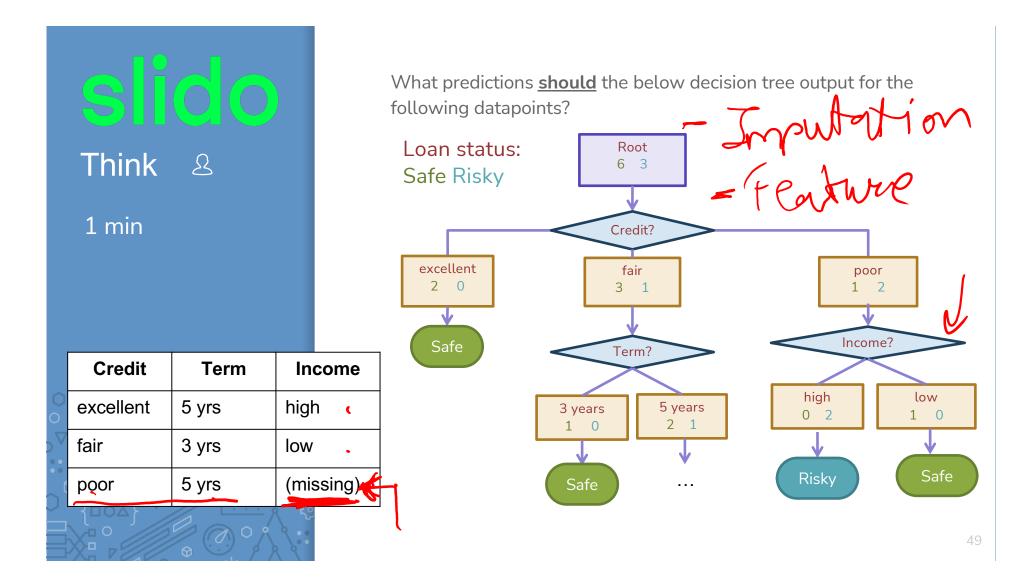
For now: Stop when all points are in one class

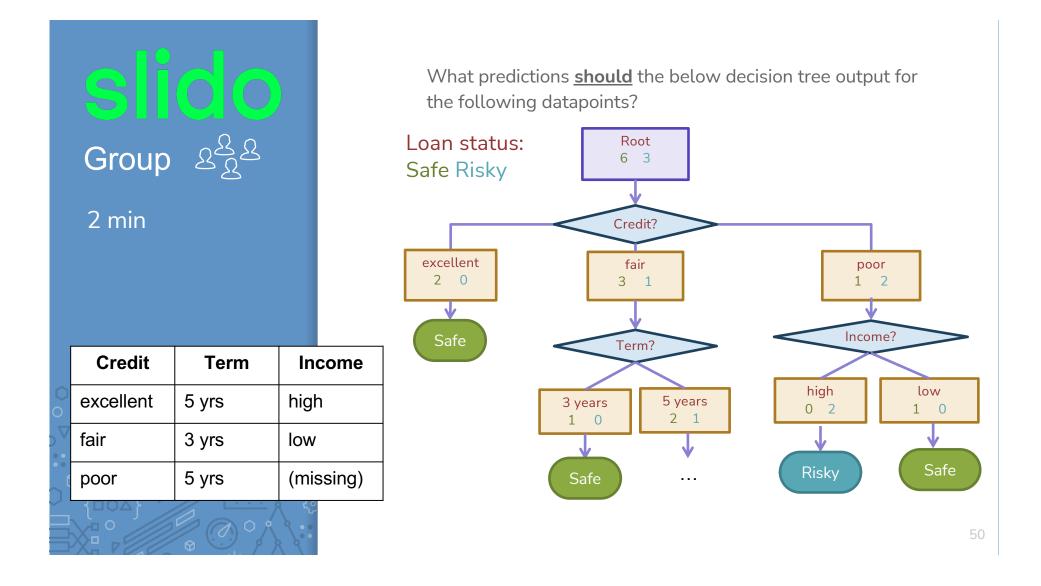
Tree learning = Recursive stump learning

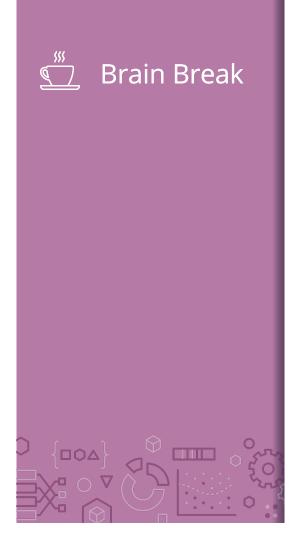


Second level





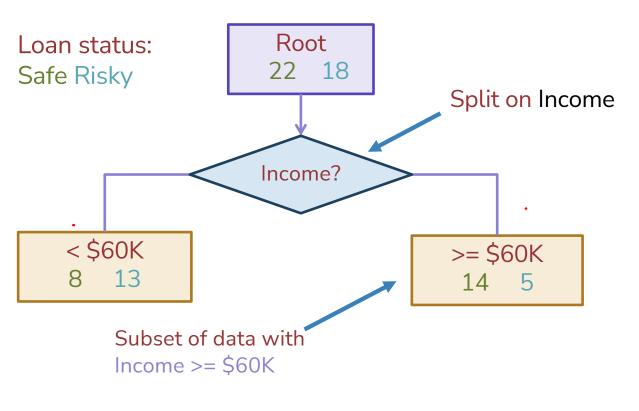


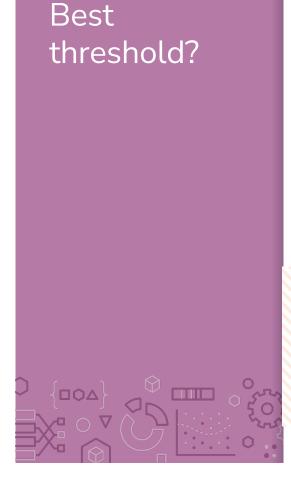


Real valued features

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	З yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

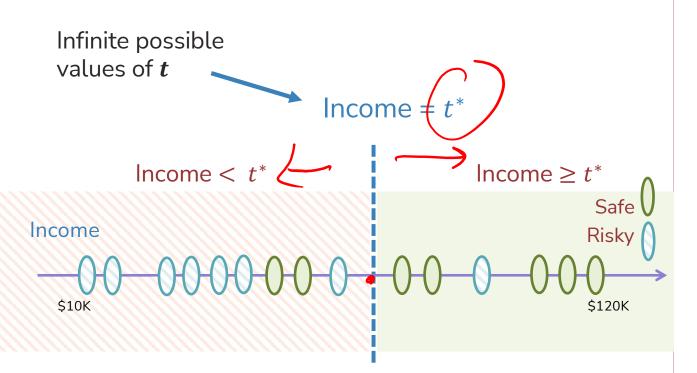
Threshold split

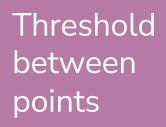




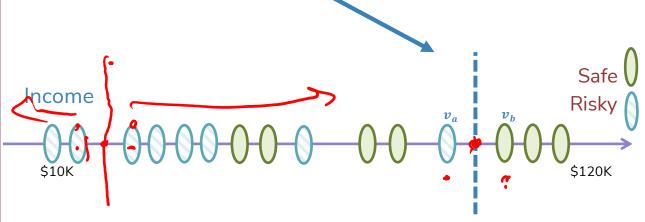
M-1 splits

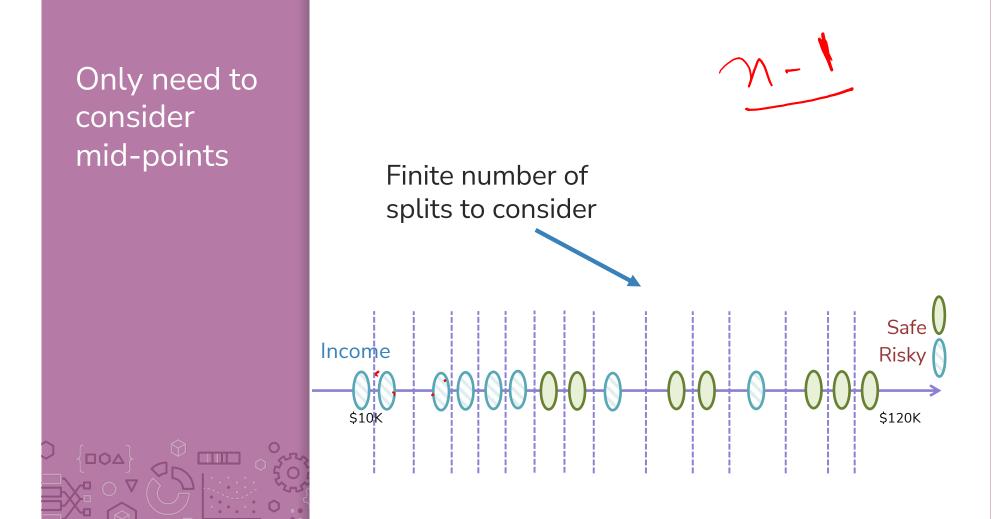
Similar to our simple, threshold model when discussing Fairness!



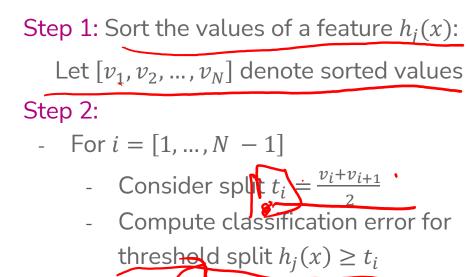


Same classification error for any threshold split between v_a and v_b



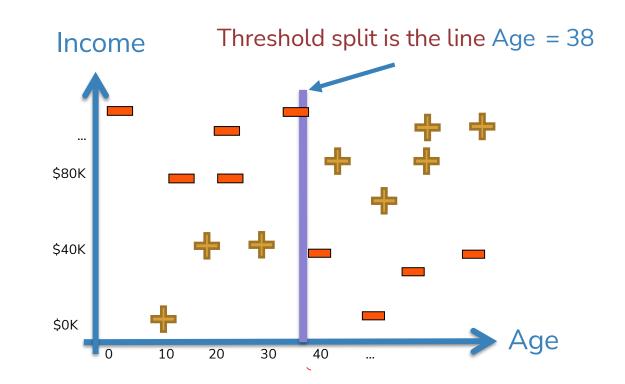


Threshold split selection algorithm

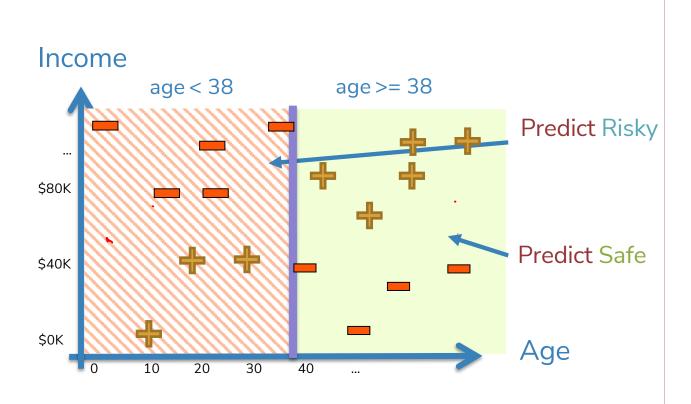


- Chose the *t** with the lowest class. error

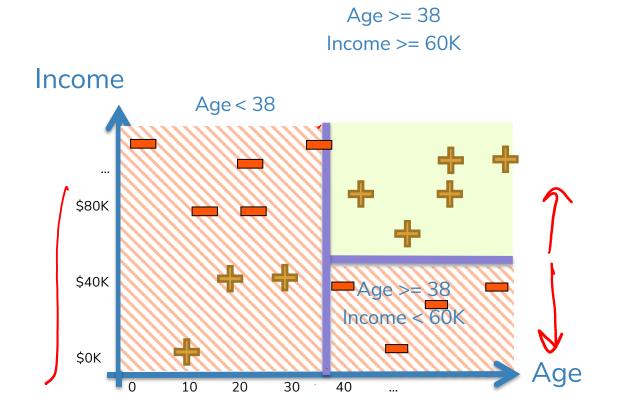
Visualizing the threshold split

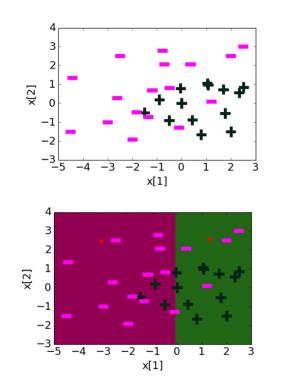


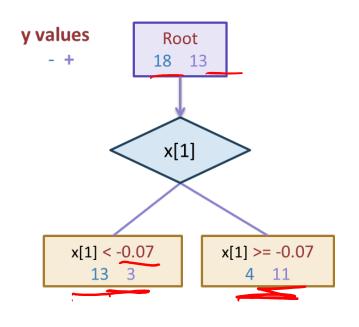
Split on Age >= 38

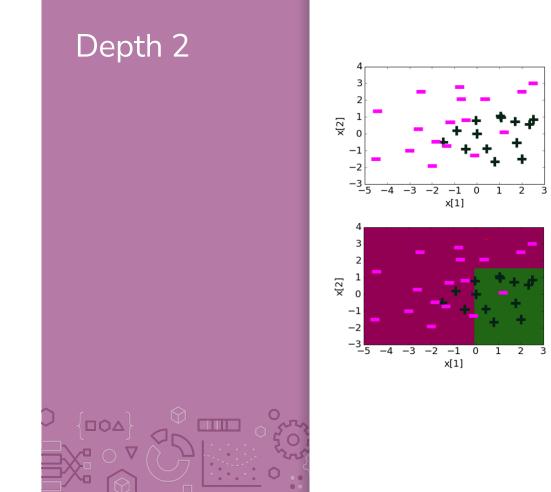


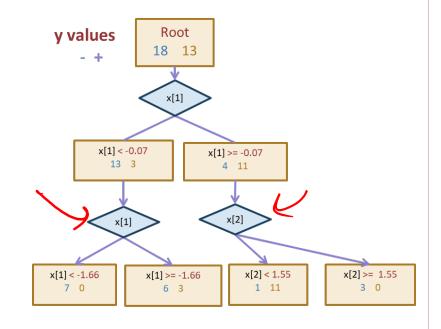
Each split partitions the 2-D space

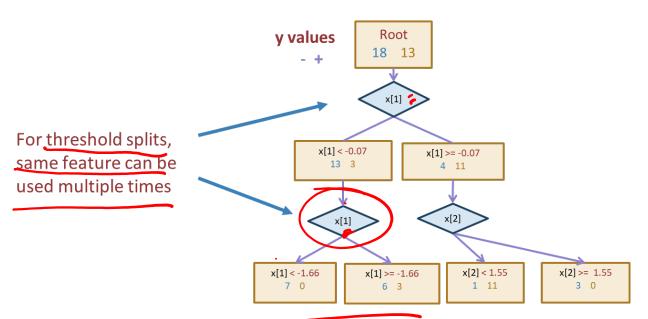












Decision boundaries

Decision boundaries can be x[2] complex!

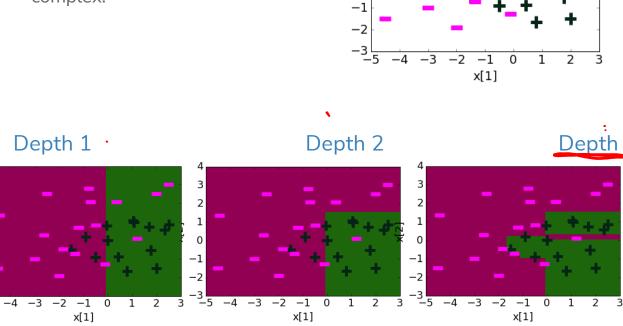
Depth 1 ·

3

2

1

0

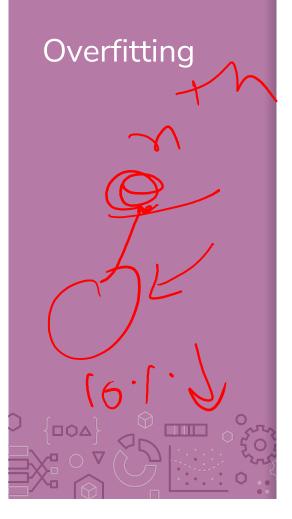


3 2

1

0

-2 -1 x[1] 0 1



Deep decision trees are prone to overfitting

- Decision boundaries are interpretable but not stable
- Small change in the dataset leads to big difference in the outcome

Overcoming Overfitting:

- Stop when tree reaches certain height (e.g., 4 levels)
 - Stop when leaf has \leq some num of points (e.g., 20 pts)
 - Will be the stopping condition for HW
- Stop if split won't significantly decrease error by more than some amount (e.g., 10%)

Other methods include growing full tree and pruning back

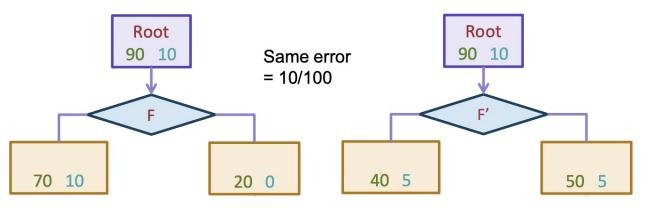
Fine-tune hyperparameters with validation set or CV

In Practice

Trees can be used for classification or regression (CART)

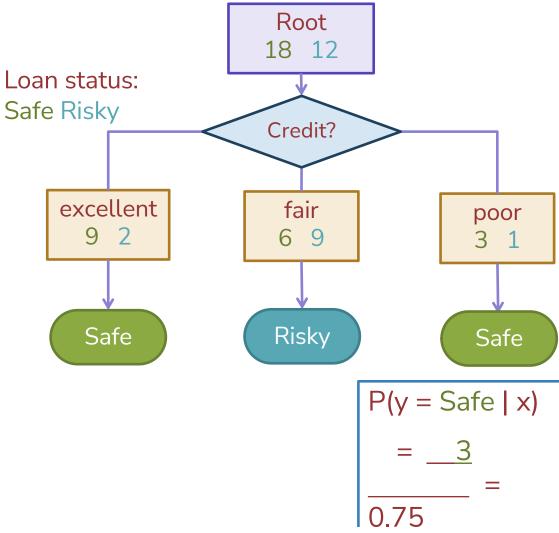
- Classification: Predict majority class for root node
- Regression: Predict average label for root node

In practice, we don't minimize classification error but instead some more complex metric to measure quality of split such as **Gini Impurity** or **Information Gain** (not covered in 416)



Can also be used to predict probabilities

Predicting probabilities



Recap

What you can do now:

Define the assumptions and modeling for Naïve Bayes Define a decision tree classifier Interpret the output of a decision trees Learn a decision tree classifier using greedy algorithm Traverse a decision tree to make predictions - Majority class predictions