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April 24, 2024

❓ Questions? Raise hand or sli.do #cs416
💬 Before Class: Pro-rain or anti-rain person?
🎵 Listening to: lecture



Administrivia - Midterm due tonight

- - Post questions on Edstem (Private post as needed)

- HW3 out Friday
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Probability 
Classifier

▪  
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Interpreting 
Score
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Training
Data

Feature
extraction

ML 
model

Quality
metric

ML algorithm

 

 

 

 

 



Naïve Bayes
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Idea: 
Naïve Bayes

▪  

7



Naïve 
Assumption

▪  
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Compute 
Probabilities

▪  
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Zeros ▪  
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Compare 
Models

▪  
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Compare 
Models
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Generative: defines a model for generating x (e.g. Naïve Bayes)

Discriminative: only cares about defining and optimizing a 
decision boundary (e.g. Logistic Regression)



sli.do #cs416

Group

Recap: What is the predicted class for this sentence assuming we 
have the following training set (no Laplace Smoothing). 
“he is not cool”
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2 min

Sentence Label

this dog is cute Positive

he does not like dogs Negative

he is not bad he is cool Positive



Decision Trees
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Humans often make decisions based on
Flow Charts 

or 
Decision Trees
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Parametric vs. Non-Parametric Methods

• Linear Regression ⇒ assume the data is linear
• Logistic Regression ⇒ assume probability has the shape 
of of a logistic curve and linear decision boundary

• Those assumptions result in a parameterized function 
family. Our learning task is to learn the parameters.

Parametric Methods: 
make assumptions about 

the data distribution

• Decision Trees, k-NN (soon)
• We’re still learning something, but not the parameters to 
a function family that we’re assuming describes the data.

• Useful when you don’t want to (or can’t) make 
assumptions about the data distribution.

Non-Parametric 
Methods: (mostly) don’t 
make assumptions about 

the data distribution



XOR ▪ A line might not always support our decisions.

17



What makes 
a loan risky? I want to buy a 

new house! Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★Loan 

Application



Credit history 
explained Did I pay previous 

loans on time?

Example: 
excellent, good, or 
fair
 

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★



Income

What’s my income?

Example: 
$80K per year

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★



Loan terms

How soon do I need to 
pay the loan?

Example: 3 years,    
5 years,…

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★



Personal 
information

Age, reason for the 
loan, marital status,…

Example: Home loan 
for a married couple

Credit History 
★★★★

Income
★★★

Term
★★★★★

Personal Info
★★★



Intelligent 
application



Classifier 
review



Setup
Data (N observations, 3 features)

Evaluation: classification error

Many possible decisions: number of trees grows exponentially! 

Credit Term Income y

excellent 3 yrs high safe

fair 5 yrs low risky

fair 3 yrs high safe

poor 5 yrs high risky

excellent 3 yrs low safe

fair 5 yrs low safe

poor 3 yrs high risky

poor 5 yrs low safe

fair 3 yrs high safe



pollev.com/cs416

ThinkThinkThink

With our discussion of bias and fairness from last week, discuss 
the potential biases and fairness concerns that might be present in 
our dataset about loan safety. 
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2 min

No poll



Decision 
Trees

• Branch/Internal node: splits into possible values of a feature

• Leaf node: final decision (the class value)

Start

Credit?

Safe

excellent

Income?

poor

Term?

Risky Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years



Brain Break
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Growing 
Trees
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Root
6    3

Visual 
Notation

Loan status:    Safe   Risky

N = 9 examples
# of Safe loans

# of Risky loans



Decision 
stump: 
1 level

Root
       6    3

Loan status: 
Safe Risky

poor
1     2

fair
3     1

excellent
2     0

Credit?

Split on Credit

Subset of data 
with Credit = 
excellent

Subset of data with 
Credit = fair

Subset of data with 
Credit = poor

Credit Term Income y

excellent 3 yrs high safe

fair 5 yrs low risky

fair 3 yrs high safe

poor 5 yrs high risky

excellent 3 yrs low safe

fair 5 yrs low safe

poor 3 yrs high risky

poor 5 yrs low safe

fair 3 yrs high safe



Making 
predictions

Root
6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

credit?

 

Safe Safe Risky
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How do we select the best feature?

Root
6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

Credit?

Choice 1: Split on Credit

Root
6  3

3 years
4   1

5 years
2  1

Loan status: 
Safe  Risky

Term?

Choice 2: Split on Term

• Select the split with lowest classification error
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Calculate the node values.

Root
6  3

3 years 5 years

Loan status: 
Safe  Risky

Term?

Choice 2: Split on Term
Credit Term Income y

excellent 3 yrs high safe

fair 5 yrs low risky

fair 3 yrs high safe

poor 5 yrs high risky

excellent 3 yrs low safe

fair 5 yrs low safe

poor 3 yrs high risky

poor 5 yrs low safe

fair 3 yrs high safe
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How do we select the best feature?

Select the split with lowest classification error

Root
6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

Credit?

Choice 1: Split on Credit

Root
6  3

3 years
4   1

5 years
2   2

Loan status: 
Safe  Risky

Term?

Choice 2: Split on Term
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How do we measure effectiveness of a split?

Error =   # mistakes 
             # data points

Root
6  3

poor
1   2

Loan status: 
Safe  Risky

Credit?

excellent
2    0

fair
3   1

Idea: Calculate classification error    
    of this decision stump
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Calculating classification error

 

Root
6    3

Loan status: 
Safe  Risky Error =           

               
         =

3 mistakes6 correct

 

Safe Tree Classification error
(root)   0.33
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Choice 1: Split on Credit history?

Does a split on Credit reduce 
classification error below 0.33? Root

6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

Credit?

Choice 1: Split on Credit
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Split on Credit: Classification error

Root
6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

Credit?

0 mistakes 1 mistake 1 mistake

Safe Safe Risky

Choice 1: Split on Credit

Error =           .

               
         =

Tree Classification error
(root)   0.33

Split on credit 0.22



40

Choice 2: Split on Term?

Root
6   3

3 years
4   1

5 years
2   2

Loan status: 
Safe  Risky

Term?

Safe

Choice 2: Split on Term

Risky
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Evaluating the split on Term

Root
6   3

3 years
4   1

5 years
2   2

Loan status: 
Safe  Risky

Term?

1 mistake 2 mistakes

Safe

Error =           .

               
         =

Tree Classification error
(root) 0.33

Split on credit 0.22
Split on term 0.33

Choice 2: Split on Term

Risky
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Choice 1 vs Choice 2:
Comparing split on credit vs term 

Root
6  3

excellent
2    0

fair
3   1

poor
1   2

Loan status: 
Safe  Risky

Root
6  3

3 years
4   1

5 years
2    2

Loan status: 
Safe  Risky

Credit? Term?

Tree Classification 
error

(root) 0.33
split on credit 0.22
split on loan term 0.33

WINNER

Choice 2: Split on TermChoice 1: Split on Credit



Split 
Selection

▪  



Greedy
& Recursive 
Algorithm

BuildTree(node)

o If termination criterion is met:
o Stop

o Else: 
o Split(node)
o For child in node:

o BuildTree(child)



Decision 
stump: 
1 level

Root
       6    3

Loan status: 
Safe Risky

poor
1     2

fair
3     1

excellent
2     0

Credit?

Split on Credit

Subset of data 
with Credit = 
excellent

Subset of data with 
Credit = fair

Subset of data with 
Credit = poor



Stopping
For now: Stop when all points are in one class



Tree learning 
= Recursive 
stump 
learning

Root
         6    3

excellent
2     0

fair
3     1

poor
2     1

Loan status: 
Safe Risky

Credit?

Safe
Build decision stump 
with subset of data 
where Credit = poor

Build decision 
stump with subset 

of data where Credit 
= fair



Second level
Root
6    3

Loan status: 
Safe Risky

Credit?

excellent
2     0

fair
3     1

poor
1     2

Safe

3 years
2     0

5 years
1    1

Term?

Build another stump
these data points

high
0    2

Low
1     0

Income?

SafeRiskySafe



sli.do #cs416

Think

What predictions should the below decision tree output for the 
following datapoints?
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1 min

Root
6    3

Loan status: 
Safe Risky

Credit?

excellent
2     0

fair
3     1

poor
1     2

Safe

3 years
1     0

5 years
2    1

Term?

high
0    2

low
1     0

Income?

SafeRiskySafe

Credit Term Income

excellent 5 yrs high

fair 3 yrs low

poor 5 yrs (missing) …



sli.do #cs416

Group

50

2 min

▪ What predictions should the below decision tree output for 
the following datapoints?
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Root
6    3

Loan status: 
Safe Risky

Credit?

excellent
2     0

fair
3     1

poor
1     2

Safe

3 years
1     0

5 years
2    1

Term?

high
0    2

low
1     0

Income?

SafeRiskySafe

Credit Term Income

excellent 5 yrs high

fair 3 yrs low

poor 5 yrs (missing) …



Brain BreakBrain BreakBrain Break
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Real valued 
features

Income Credit Term y
$105 K excellent 3 yrs Safe
$112 K good 5 yrs Risky
$73 K fair 3 yrs Safe
$69 K excellent 5 yrs Safe

$217 K excellent 3 yrs Risky
$120 K good 5 yrs Safe
$64 K fair 3 yrs Risky

$340 K excellent 5 yrs Safe
$60 K good 3 yrs Risky



Threshold 
split

Root
     22    18

Loan status: 
Safe Risky

Split on Income

< $60K
8     13

>= $60K
14     5

Income? 

Subset of data with 
Income >= $60K



Best 
threshold?

Similar to our simple, threshold model when discussing Fairness!

 

  

Safe
RiskyIncome

$120K$10K

 



Threshold 
between 
points

Income

$120K$10K

  

 

Safe
Risky



Only need to 
consider 
mid-points

Income

$120K$10K

Finite number of 
splits to consider

Safe
Risky



Threshold 
split 
selection 
algorithm 

▪  



Visualizing 
the threshold 
split

0 10 20 30 40 …

    $0K

$40K

$80K

…

Age

Income Threshold split is the line Age  = 38



age >= 38

Split on Age 
>= 38

Age

Income
age < 38

Predict Safe

Predict Risky

0 10 20 30 40 …

    $0K

$40K

$80K

…



Each split 
partitions the 
2-D space

Age

Age >= 38
Income >= 60K

Age < 38

Age >= 38
Income < 60K

Income

0 10 20 30 40 …

    $0K

$40K

$80K

…



Depth 1: 
Split on x[1]



Depth 2



Threshold 
split caveat



Decision 
boundaries

▪ Decision boundaries can be 
complex!

                Depth 1                                      Depth 2                               Depth 10



Overfitting ▪  



In Practice ▪ Trees can be used for classification or regression (CART)
- Classification: Predict majority class for root node
- Regression: Predict average label for root node

▪ In practice, we don’t minimize classification error but instead 
some more complex metric to measure quality of split such as 
Gini Impurity or Information Gain (not covered in 416)

▪ Can also be used to predict probabilities
66



Predicting 
probabilities

Root
18   12

excellent
9   2

fair
6   9

poor
3   1

Loan status: 
Safe Risky

Credit?

Safe Risky

P(y = Safe | x)
 

    =      3    = 
0.75
          3 + 1

Safe



Recap What you can do now:

▪ Define the assumptions and modeling for Naïve Bayes

▪ Define a decision tree classifier

▪ Interpret the output of a decision trees

▪ Learn a decision tree classifier using greedy algorithm

▪ Traverse a decision tree to make predictions
- Majority class predictions


