CSE/STAT 416

Logistic Regression

Tanmay Shah
University of Washington
April 12, 2024
? Questions? Raise hand or sli.do \#cs416
.. Before Class: Does a straw have two holes or one?
J. Listening to: your chatter which leaks into Panopto recordings

Administrivia

Coming up

- Week 3: Societal Impacts of ML (Fairness and Bias)
- Week 4: Other ML models for classification
- Week 5: Deep Learning

HW3 released today, due next Tuesday
Midterm

- Released Monday 4/22 at 9:00 AM am. Due Wednesday 4/24 at 11:59 pm.

More logistics announcements later

- Format: Think longer conceptual assignment from HW
- Covers everything from Module 0 (Regression) to Module 3 (Societal Impact, Bias, Fairness) Should follow our normal collaboration policy
- Think of it as a trial run for the final exam

Sentiment Classifier

In our example, we want to classify a restaurant review as positive or negative.

Input: x

Output: y
Predicted class

Decision
 Boundary

Consider if only two words had non-zero coefficients

Word	Coefficient	Weight
	w_{0}	0.0
	$w_{1}=1 \cdot$ \#awesome $-1.5 \cdot$ \#awful	
awesome	w_{1}	1.0
awful	w_{2}	-1.5

Learning \widehat{w}

All the Same?

One idea is to just model the processing of finding \widehat{w} based on what we discussed in linear regression

$$
\widehat{w}=\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left\{y_{i} \neq \hat{y}_{i}\right\}
$$

Will this work?
Assume $h_{1}(x)=$ \#awesome so w_{1} is its coefficient and w_{2} is fixed.

Minimizing
 Error

Minimizing classification error is probably the most intuitive thing to do given all we have learned from regression. However, it just doesn't work in this case with classification.

We aren't able to use a method like gradient descent here because the function isn't "nice" (it's not continuous, it's not differentiable, etc.).

We will use a stand-in for classification error that will allow us to use an optimization algorithm. But first, we have to change the problem we care about a bit.

Instead of caring about the classifications, let's look at some probabilities

Probabilities

Assume that there is some randomness in the world, and instead will try to model the probability of a positive/negative label.

Examples:

"The sushi \& everything else were awesome!"
Definite positive (+1)

$$
P(y=+1 \mid x=\text { "The sushi \& everything else were awesome }!")=0.99
$$

"The sushi was alright, the service was OK"
Not as sure

$$
P(y=-1 \mid x=\text { "The sushi alright, the service was okay!" })=0.5
$$

Use probability as the measurement of certainty

$$
P(y \mid x)
$$

Probability Classifier

Idea: Estimate probabilities $\hat{P}(y \mid x)$ and use those for prediction

Probability Classifier

Input x : Sentence from review

$$
\text { Estimate class probability } \widehat{P}(y=+1 \mid x)
$$

$$
\text { If } \hat{P}(y=+1 \mid x)>0.5:
$$

$$
\hat{y}=+1
$$

Else:

$$
\hat{y}=-1
$$

Notes:

Estimating the probability improves interpretability

It's Powerful

Score

 Probabilities?What if $\operatorname{Score}(x)$ is positive?

What if $\operatorname{Score}(x)$ is negative?

What if $\operatorname{Score}(x)$ is 0 ?

Interpreting Score

	$\operatorname{Score}\left(x_{i}\right)=w^{T} h\left(x_{i}\right)$	
Very sure	$\hat{y}_{i}=-1$	$\hat{y}_{i}=+1$

Logistic
 Function

Score (x)	sigmoid(Score $(x))$
$-\infty$	
-2	
0	
2	
∞	

Use a function that takes numbers arbitrarily large/small and maps them between 0 and 1 .

$$
\operatorname{sigmoid}(\operatorname{Score}(x))=\frac{1}{1+e^{-\operatorname{Score}(x)}}
$$

Logistic Regression Model

$$
P\left(y_{i}=+1 \mid x_{i}, w\right)=\operatorname{sigmoid}\left(\operatorname{Score}\left(x_{i}\right)\right)=\frac{1}{1+e^{-w^{T} h\left(x_{i}\right)}}
$$

Logistic Regression Classifier

Input x : Sentence from review
Estimate class probability $\hat{P}(y=+1 \mid x, \widehat{w})=\operatorname{sigmoid}\left(\widehat{w}^{T} h\left(x_{i}\right)\right)$

$$
\text { If } \hat{P}(y=+1 \mid x, \widehat{w})>0.5:
$$

$$
\hat{y}=+1
$$

Else:

$$
\hat{y}=-1
$$

ML Pipeline

$$
\widehat{P}(y=+1 \mid x, \widehat{w})=\operatorname{sigmoid}\left(\widehat{w}^{T} h(x)\right)=\frac{1}{1+e^{-\widehat{w}^{T} h(x)}}
$$

Demo
Show logistic demo (see course website)

What would the Logistic Regression model predict for $P(y=-1 \mid x, w) ?$

Think ε

1 min
"Sushi was great, the food was awesome, but the service was terrible"

$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	$h_{4}(x)$	$h_{5}(x)$	$h_{6}(x)$	$h_{7}(x)$	$h_{8}(x)$	$h_{9}(x)$
sushi	was	great	the	food	awesome	but	service	terrible
1	3	1	2	1	1	1	1	1

Word	Weight
sushi	0
was	0
great	1
the	0
food	0
awesome	2
but	0
service	0
terrible	-1

What would the Logistic Regression model predict for

Group $\Omega_{8}^{8} \Omega$

$$
P(y=-1 \mid x, w) ?
$$

2 min

"Sushi was great, the food was awesome, but the service was terrible"

$h_{1}(x)$	$h_{2}(x)$	$h_{3}(x)$	$h_{4}(x)$	$h_{5}(x)$	$h_{6}(x)$	$h_{7}(x)$	$h_{8}(x)$	$h_{9}(x)$
sushi	was	great	the	food	awesome	but	service	terrible
1	3	1	2	1	1	1	1	1

Word	Weight
sushi	0
was	0
great	1
the	0
food	0
awesome	2
but	0
service	0
terrible	-1

Quality Metric = Likelihood

Want to compute the probability of seeing our dataset for every possible setting for w. Find w that makes data most likely! (e.g., maximize this likelihood metric)

Data Point	$h_{1}(x)$	$h_{2}(x)$	y	Choose w to maximize
x_{1}, y_{1}	2	1	+1	$P\left(y_{1}=+1 \mid x_{1}, w\right)$
x_{2}, y_{2}	0	2	-1	$P\left(y_{2}=-1 \mid x_{2}, w\right)$
x_{3}, y_{3}	3	3	-1	$P\left(y_{3}=-1 \mid x_{3}, w\right)$
x_{4}, y_{4}	4	1	+1	$P\left(y_{4}=+1 \mid x_{4}, w\right)$

Learn \widehat{w}

Now that we have our new model, we will talk about how to choose \widehat{w} to be the "best fit".

The choice of w affects how likely seeing our dataset is

Maximum Likelihood
 Estimate (MLE)

Find the w that maximizes the likelihood

$$
\widehat{w}=\underset{w}{\operatorname{argmax}} \ell(w)=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, w\right)
$$

Generally, we maximize the log-likelihood which looks like
$\widehat{w}=\underset{w}{\operatorname{argmax}} \ell(w)=\underset{w}{\operatorname{argmax}} \log (\ell(w))=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(P\left(y_{i} \mid x_{i}, w\right)\right)$

Also commonly written by separating out positive/negative terms
$\widehat{w}=\underset{w}{\operatorname{argmax}} \sum_{i=1: y_{i}=+1}^{n} \ln \left(\frac{1}{1+e^{-w^{T} h(x)}}\right)+\sum_{i=1: y_{i}=-1}^{n} \ln \left(\frac{e^{-w^{T} h(x)}}{1+e^{-w^{T} h(x)}}\right)$

Which setting of w should we use?

Group Ω_{8}^{Ω}
1 min
(ब) ㅇ
sli.do \#cs416

Brain Break

Finding MLE

No closed-form solution, have to use an iterative method.
Since we are maximizing likelihood, we use gradient ascent.

$$
\widehat{w}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(P\left(y_{i} \mid x_{i}, w\right)\right)
$$

Gradient Ascent

Gradient ascent is the same as gradient descent, but we go "up the hill".

```
start at some (random) point w(0) when t=0
while we haven't converged
    w ^ { ( t + 1 ) } \leftarrow w ^ { ( t ) } + \eta \nabla \operatorname { l o g } ( \ell ( w ^ { ( t ) } ) )
    t\leftarrowt+1
```

This is just describing going up the hill step by step.
η controls how big of steps we take, and picking it is crucial for how well the model you learn does!

Learning Curve

Choosing η

Step-size too small

Choosing η

What about a larger step-size?

Choosing η

What about a larger step-size?

Choosing η

Unfortunately, you have to do a lot of trial and error ${ }^{(2)}$

Try several values (generally exponentially spaced)
Find one that is too small and one that is too large to narrow search range. Try values in between!

Advanced: Divergence with large step sizes tends to happen at the end, close to the optimal point. You can use a decreasing step size to avoid this

$$
\eta_{t}=\frac{\eta_{0}}{t}
$$

Grid Search

We have introduced yet another hyperparameter that you have to choose, that will affect which predictor is ultimately learned.

If you want to tune both a Ridge penalty and a learning rate (step size for gradient descent), you will need to try all pairs of settings!

For example, suppose you wanted to try using a validation set to select the right settings out of:

$$
\lambda \in[0.01,0.1,1,10,100]
$$

$$
\eta_{t} \in\left[0.001,0.01,0.1,1, \frac{1}{t}, \frac{10}{t}\right]
$$

You will need to train 30 different models and evaluate each one!

E Brain Break

Overfitting -

 Classification
More Features

Like with regression, we can learn more complicated models by including more features or by including more complex features.

Instead of just using

$$
\begin{aligned}
& h_{1}(x)=\text { \#awesome } \\
& h_{2}(x)=\text { \#awful }
\end{aligned}
$$

We could use

$$
\begin{aligned}
& h_{1}(x)=\# \text { awesome } \\
& h_{2}(x)=\text { \#awful } \\
& h_{3}(x)=\text { \#awesome }^{2} \\
& h_{4}(x)=\text { \#awful }^{2}
\end{aligned}
$$

Decision
 Boundary

$$
w^{T} h(x)=0.23+1.12 x[1]-1.07 x[2]
$$

Feature	Value	Coefficient learned
$h_{0}(x)$	1	0.23
$h_{1}(x)$	$x[1]$	1.12
$h_{2}(x)$	$x[2]$	-1.07

Decision
 Boundary

$$
w^{T} h(x)=1.68+1.39 x[1]-0.59 x[2]-0.17 x[1]^{2}-0.96 x[2]^{2}
$$

Feature	Value	Coefficient learned
$\mathrm{h}_{0}(\mathrm{x})$	1	1.68
$\mathrm{~h}_{1}(\mathrm{x})$	$\mathrm{x}[1]$	1.39
$\mathrm{~h}_{2}(\mathrm{x})$	$\mathrm{x}[2]$	-0.59
$\mathrm{~h}_{3}(\mathrm{x})$	$(\mathrm{x}[1])^{2}$	-0.17
$\mathrm{~h}_{4}(\mathrm{x})$	$(\mathrm{x}[2])^{2}$	-0.96

Decision
 Boundary

$$
w^{T} h(x)=\cdots
$$

Feature	Value	Coefficient learned
$h_{0}(x)$	1	21.6
$h_{1}(x)$	$x[1]$	5.3
$h_{2}(x)$	$x[2]$	-42.7
$h_{3}(x)$	$(x[1])^{2}$	-15.9
$h_{4}(x)$	$(x[2])^{2}$	-48.6
$h_{5}(x)$	$(x[1])^{3}$	-11.0
$h_{6}(x)$	$(x[2])^{3}$	67.0
$h_{7}(x)$	$(x[1])^{4}$	1.5
$h_{8}(x)$	$(x[2])^{4}$	48.0
$h_{9}(x)$	$(x[1])^{5}$	4.4
$h_{10}(x)$	$(x[2])^{5}$	-14.2
$h_{11}(x)$	$(x[1])^{6}$	0.8
$h_{12}(x)$	$(x[2])^{6}$	-8.6

Decision
 Boundary

Overfitting

Just like with regression, we see a similar pattern with complexity
Classification

Effects of
 Overfitting

Remember, we say the logistic function become "sharper" with larger coefficients.

w_{0}	0
$w_{\text {\#awesome }}$	+1
$w_{\text {\#awful }}$	-1

w_{0}	0
$w_{\text {\#awesome }}$	+2
$w_{\text {\#awful }}$	-2

w_{0}	0
$w_{\text {\#awesome }}$	+6
$w_{\text {\#awful }}$	-6

What does this mean for our predictions?
Because the Score (x) is getting larger in magnitude, the probabilities are closer to 0 or 1!

Plotting
 Probabilities

$$
P(y=+1 \mid x)=\frac{1}{1+e^{-\hat{w}^{T} h(x)}}
$$

Regularization

L2 Regularized Logistic Regression

Just like in regression, can change our quality metric to avoid overfitting when training a model

$$
\widehat{w}=\underset{w}{\operatorname{argmax}} \log (\ell(w))-\lambda| | w \|_{2}^{2}
$$

Regularization	$\lambda=0$	$\lambda=0.00001$	$\lambda=0.001$	$\lambda=1$	$\lambda=10$
Range of coefficients	-3170 to 3803	-8.04 to 12.14	-0.70 to 1.25	-0.13 to 0.57	-0.05 to 0.22
Decision boundary					
Learned probabilities					
					45

Some Details

Why do we subtract the L2 Norm?

$$
\widehat{w}=\underset{w}{\operatorname{argmax}} \log (\ell(w))-\lambda| | w \|_{2}^{2}
$$

How does λ impact the complexity of the model?

How do we pick λ ?

Coefficient \widehat{w}_{j}

Coefficient Path:
 L2 Penalty

Group $8_{8}^{8} \underbrace{8}$

2 min

Jake wants to find the best Logistic Regression model for a sentiment analysis dataset by tuning the regularization parameter $\lambda \in\left[0,10^{-2}, 10^{-1}, 1,10\right]$ and the learning rate $\eta \in$ $\left[10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}\right]$. He does the following:

Runs cross-validation on λ to get the best value for the regularization parameter.

- For that value of λ, run cross-validation on η to get the best value for the learning rate.

After running this procedure, he is convinced he has the best Logistic Regression model for his dataset, given the hyperparameter values he wanted to test.

What did Jake do wrong?

Recap

Theme: Details of logistic classification and how to train it Ideas:

Predict with probabilities
Using the logistic function to turn Score to probability
Logistic Regression
Minimizing error vs maximizing likelihood
Gradient Ascent
Effects of learning rate
Overfitting with logistic regression

- Over-confident (probabilities close to 0 or 1)
- Regularization

