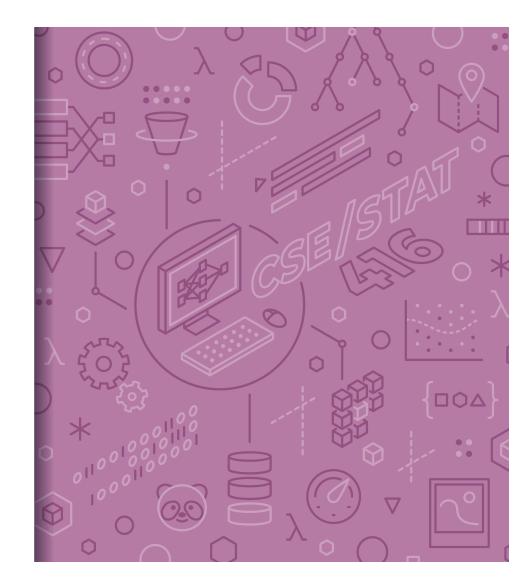
CSE/STAT 416

Dimensionality Reduction & Recommender Systems Intro Lecture 16

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

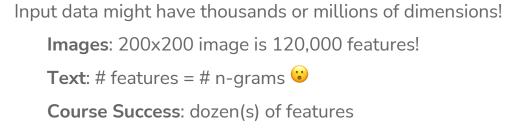
May 22, 2024

Questions? Raise hand or sli.do #cs416
 Listening to: Still Woozy



Dimensionality Reduction

Large Dimensionality



User Ratings: 100s of ratings (one per rate-able item)

	Area Abbreviation	Area Code	Area	Item Code	Item	Element Code	Element	Unit	latitude	longitude	 Y2004
0	AF	2	Afghanistan	2511	Wheat and products	5142	Food	1000 tonnes	33.94	67.71	 3249.0
1	AF	2	Afghanistan	2805	Rice (Milled Equivalent)	5142	Food	1000 tonnes	33.94	67.71	 419.0
2	AF	2	Afghanistan	2513	Barley and products	5521	Feed	1000 tonnes	33.94	67.71	 58.0
3	AF	2	Afghanistan	2513	Barley and products	5142	Food	1000 tonnes	33.94	67.71	 185.0
4	AF	2	Afghanistan	2514	Maize and products	5521	Feed	1000 tonnes	33.94	67.71	 120.0

Issues with Too Many Dimensions

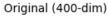
Visualization: Hard to visualize more than 3D.

Overfitting: Greater risk of overfitting with more features/dimensions

Scalability: some ML approaches (e.g., k-nn, k-means) perform poorly in high-dimensional spaces (curse of dimensionality)

Redundancy: high-dimensional data often occupies a lowerdimensional subspace.

- Most pixels in MNIST (digit recognition) are white are they necessary?
 - Image Compression



Compressed (40-dim)

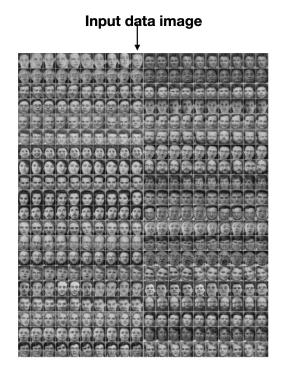
Dimensionality Reduction

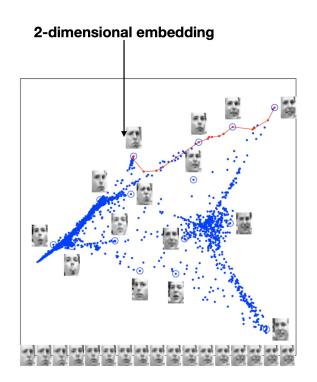
Dimensionality Reduction is the the task of representing the data with a fewer number of dimensions, while keeping meaningful relations between data

Example: Embedding Pictures

Example: Embed high dimensional data in low dimensions to visualize the data

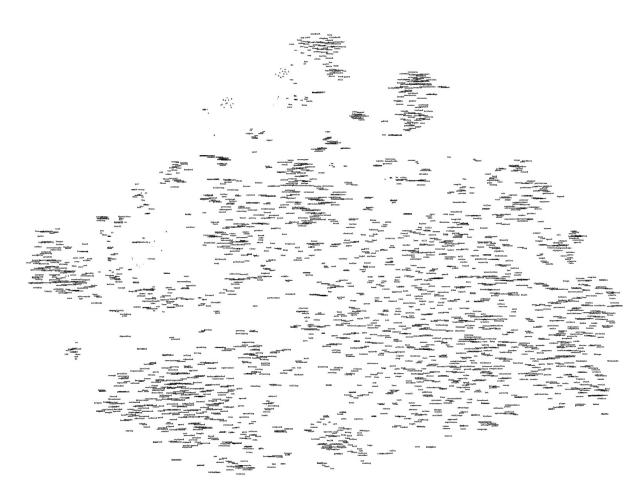
Goal: Similar images should be near each other.





6

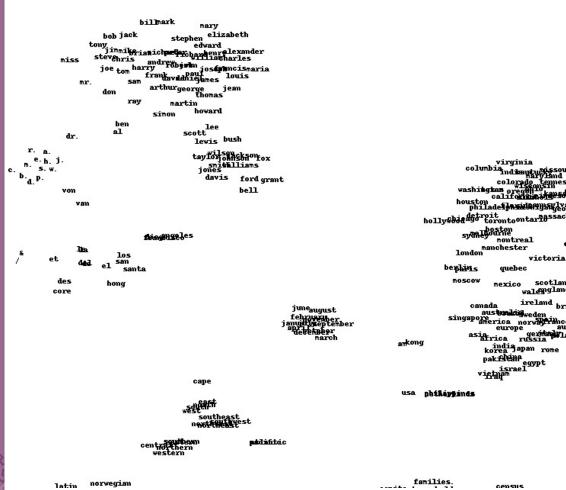
Example: Embedding Words



Example: Embedding Words

£

1



virginia columbiindiamitydissouri colorado tempesse washingtam orgentilitationesse houston califatimationesse houston califatimationesse houston califatimationesse houston califatimationesse atomit holly bid ago torontoontariossachusetts your torontoontariossachusetts **carfori**dge victoria mexico scotland _{wale}ggland ireland britain canada ireland britain aus**tunkii**sweden singapo america norwariance europe exitainatian asia ruca rucsia africa rucsia

census

uss

Principal Component Analysis (PCA)

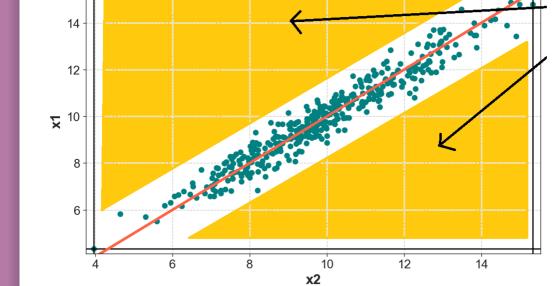
One very popular dimensionality reduction algorithm is called **Principal Component Analysis (PCA)**.

Idea: Use a linear projection from *d*-dimensional data to *k*-dimensional data E.g. 1000 dimension word vectors to 3 dimensions

Choose the projection that minimizes reconstruction error

Idea: The information lost if you were to "undo" the projection

Principal Component Analysis (PCA)



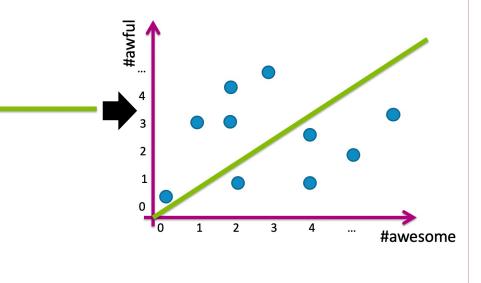
Case A: Correlation between x1 and x2 is: 0.9685

Regions with no data. Data exists close to a lowerdimensional subspace.

10

Reconstruction

Reconstruct original data only knowing the projection

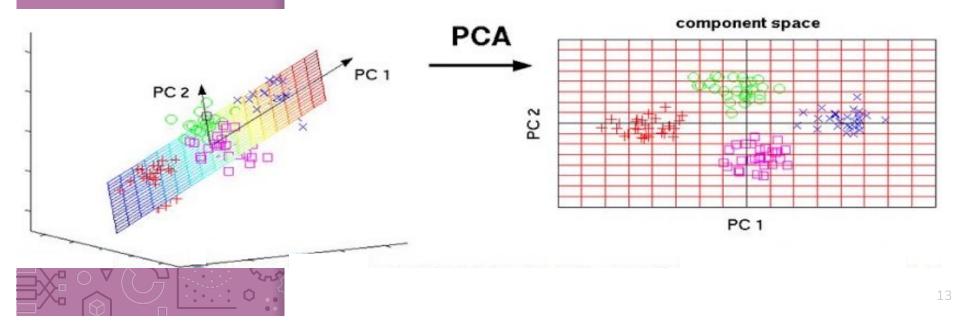


Linear Projection in Higher Dimensions

Think of PCA as giving each datapoint a new "address."

Earlier, you could find the datapoint by going to the location (x, y, z).

Now, if you are just moving in the projection plane, you can (approximately) find the datapoint by going to the location (u_1, u_2)



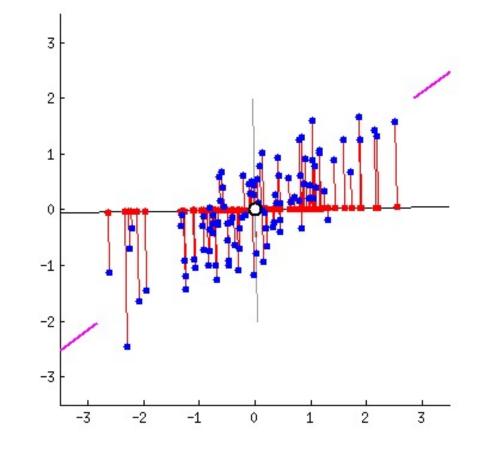
Compute the 2D coordinates of the following point. Then compute its reconstruction error.

- $x_i = [0, -7, 3, 2, 5]$
- $u_1 = [-0.5, 0, 0.5, -0.5, 0.5]$
- $u_2 = [0.5, 0, 0.5, -0.5, -0.5]$
- $-z_i = ??$
- $\hat{x}_i = ??$
- $\|\hat{x}_i x_i\|_2^2 = ??$

Compute the 2D coordinates of the following point. Then compute its reconstruction error.

- $x_i = [0, -7, 3, 2, 5]$
- $u_1 = [-0.5, 0, 0.5, -0.5, 0.5]$
- $u_2 = [0.5, 0, 0.5, -0.5, -0.5]$
- $-z_i = ??$
- $\hat{x}_i = ??$
- $\|\hat{x}_i x_i\|_2^2 = ??$

How do we find the best projection vector(s)?

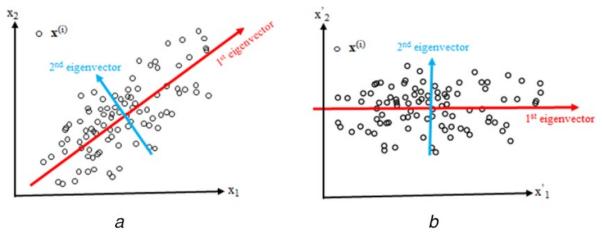


Pick the vector(s) along which the datapoints have the most variation!

Eigenvectors

There is a quantity in linear algebra that does exactly that!

The **eigenvectors** of a d-dimensional dataset* are a collection of d <u>perpendicular</u> vectors that point in the directions of greatest variation amongst the points in the dataset.



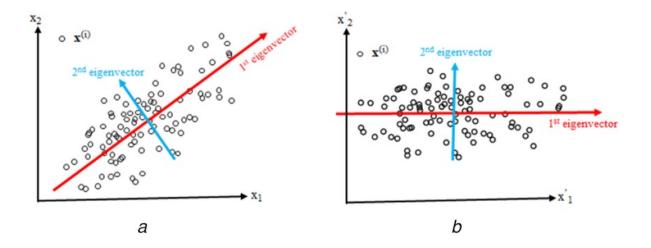
Eigenvectors rotate the axes of the d dimensional space.

* (caveat) the eigenvectors are actually associated with the <u>covariance</u> <u>matrix</u> of the dataset

Eigenvalues

Each eigenvector has a corresponding **eigenvalue**, indicating how much the dataset varies in that direction.

Greater eigenvalue \rightarrow greater variance.



PCA: Take the *k* eigenvectors with greatest eigenvalues.

18

PCA Algorithm

Input Data: An $n \times d$ data matrix X

- Each row is an example
- **1.** Center Data: Subtract mean from each row $X_c \leftarrow X \overline{X}[1:d]$
- 2. Compute spread/orientation: Compute covariance matrix Σ $\Sigma[t,s] = \frac{1}{n} \sum_{i=1}^{n} x_{c,i}[t] x_{c,i}[s]$
- Find basis for orientation: Compute eigenvectors of Σ
 Select k eigenvectors u₁,..., u_k with largest eigenvalues
- 4. **Project Data**: Project data onto principal components $z_i[1] = u_1^T x_{c,i} = u_1[1]x_{c,i}[1] + \dots + u_1[d]x_{c,i}[d]$... $z_i[k] = u_k^T x_{c,i} = u_k[1]x_{c,i}[1] + \dots + u_k[d]x_{c,i}[d]$

Reconstructing Data

Using principal components and the projected data, you can reconstruct the data in the original domain.

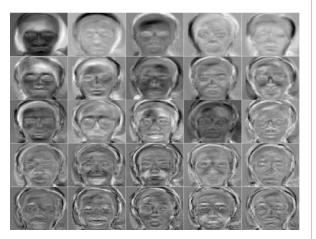
$$\hat{x}_i[1:d] = \bar{X}[1:d] + \sum_{j=1}^k z_i[j] \ u_j$$

Example: Eigenfaces

Apply PCA to face data

Input Data

Principal Components

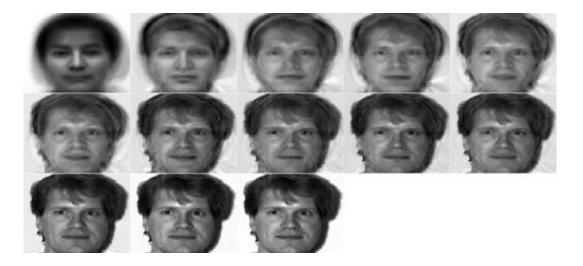


Reconstructing Faces

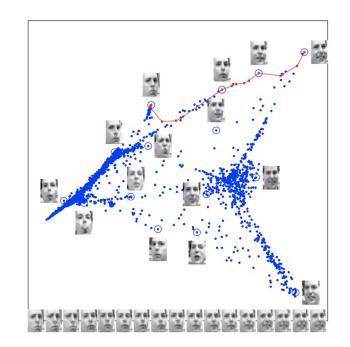
Depending on context, it may make sense to look at either original data or projected data.

In this case, let's see how the original data looks after using more and more principal components for reconstruction.

Each image shows additional 8 principal components

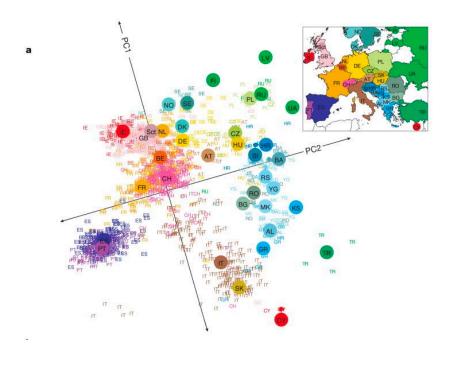


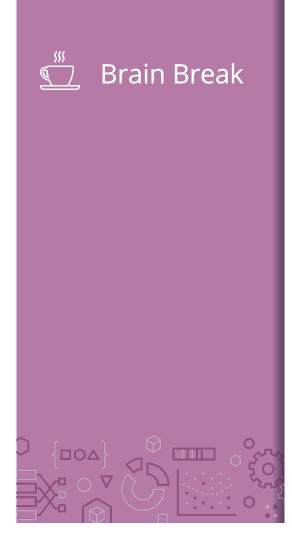
Other times, it does make sense to look at the data in the projected space! (Usually if $k \leq 3$)



Example: Genes

Dataset of genes of Europeans (3192 people; 500,568 loci) and their country of origin, ran PCA on the data and plotted 2 principal components.



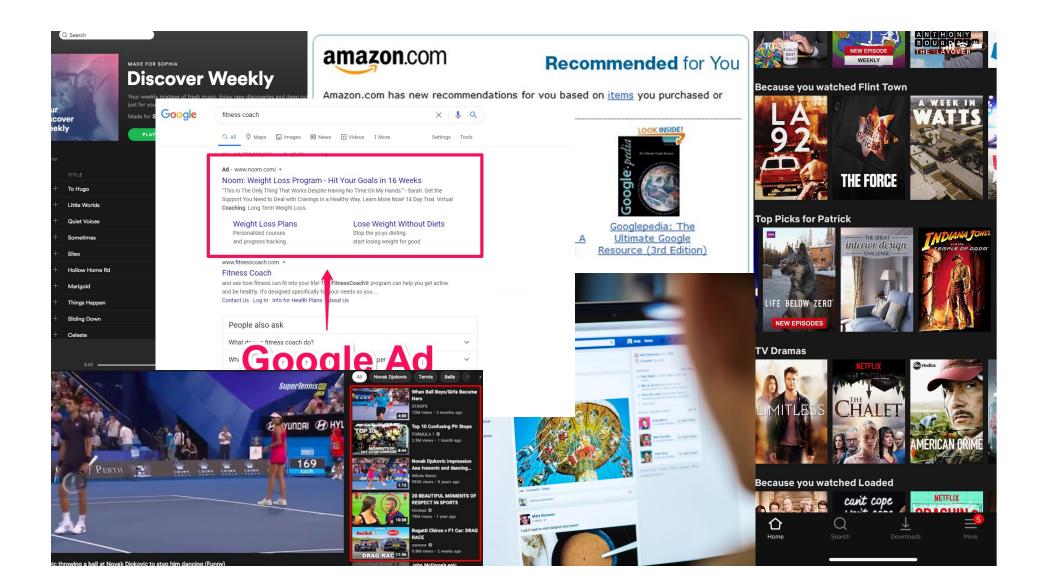


General Steps to Take as an ML Practitioner

Given a new dataset:

- Split into train and test sets.
- Understand the dataset:
 - Understand the feature/label types and values
 - Visualize the data: scatterplot, boxplot, PCA, clustering
- Use that intuition to decide:
 - What features to use, and what transformations to apply to them (pre-processing).
 - What model(s) to train.
- Train the models, evaluate them using a validation set or cross-validation.
- Deploy the best model.

Intro to Recommender Systems



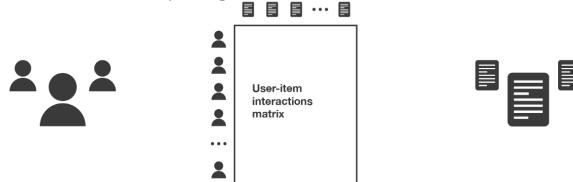
Recommender Systems Setup

You have n users and m items in your system

Typically, $n \gg m$. E.g., Youtube: 2.6B users, 800M videos

Based on the content, we have a way of measuring user preference.

This data is put together into a **user-item interaction matrix**.

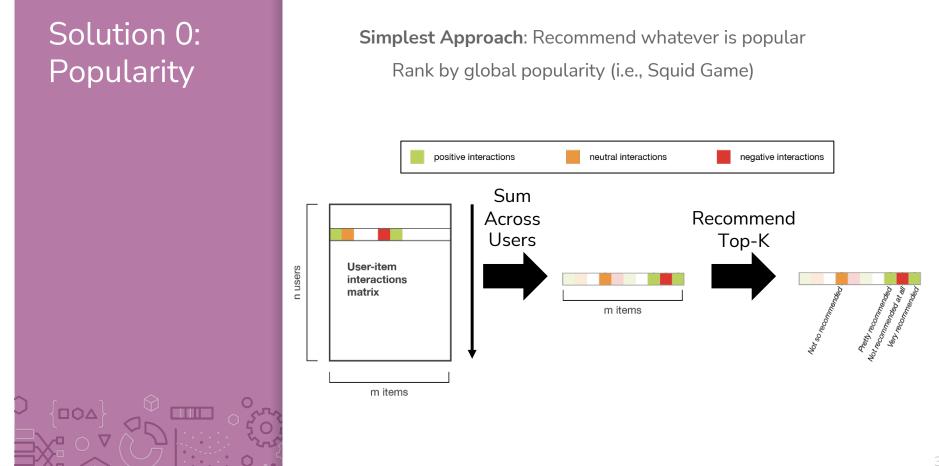


Users	User-item interactions matrix	Items
suscribers	rating given by a user to a movie (integer)	movies
readers	time spent by a reader on an article (float)	articles
buyers	product clicked or not when suggested (boolean)	products

Task: Given a user u_i or item v_j , predict one or more items to recommend.

29

Solution 0: Popularity



Solution 0 (Popularity) Pros / Cons

Pros:

Easy to implement

Cons:

No Personalization

Feedback Loops

Top-K recommendations might be redundant

- e.g., when a new Harry Potter movie is released, the others may also jump into top-k popularity.

Top 10 in the U.S. Today

Solution 1: Nearest User

User-User

Concerned parents: if all your friends jumped into the fire would you follow them?

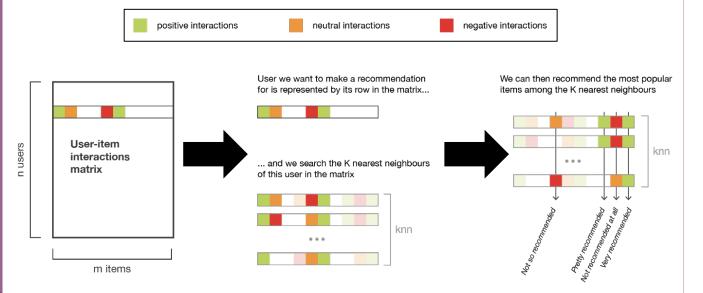
Machine learning algorithm:

Solution 1: Nearest User (User-User)

User-User Recommendation:

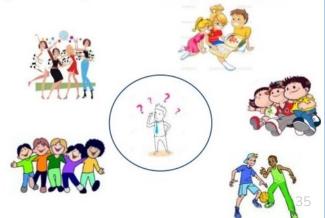
Given a user u_i , compute their k nearest neighbors.

Recommend the items that are most popular amongst the nearest neighbors.



What do you see as pros / cons of the nearest user approach to recommendations?

Tell me about your friends(who your neighbors are) and I will tell you who you are.



Solution 1 (User-User) Pros / Cons

Pros:

Personalized to the user.

Cons:

Nearest Neighbors might be too similar

- This approach only works if the nearest neighbors have interacted with items that the user hasn't.

Feedback Loop (Echo Chambers)

Scalability

- Must store and search through entire user-item matrix

Cold-Start Problem

- What do you do about new users, with no data?

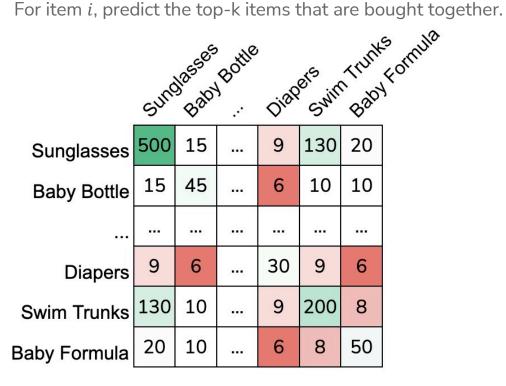
Solution 2: "People Who Bought This Also Bought..."

Item-Item

Solution 2: "People Who Bought This Also Bought..." (Item-Item)

Item-Item Recommendation:

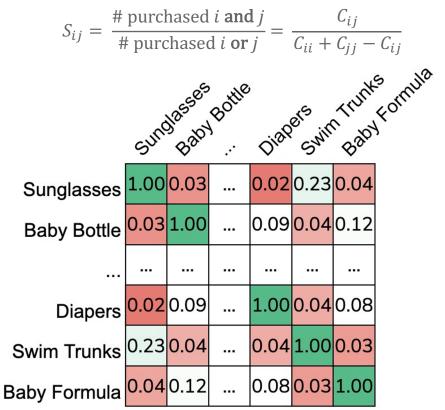
Create a **co-occurrence matrix** $C \in \mathbb{R}^{m \times m}$ (*m* is the number of items). $C_{ij} = \#$ of users who bought both item *i* and *j*.



38

Normalizing Co-Occurence Matrices

Problem: popular items drown out the rest!Solution: Normalizing using Jaccard Similarity.



39

Incorporating Purchase History

What if I know the user u has bought a baby bottle and formula? Idea: Take the average similarity between items they have bought

$$Score(u, diapers) = \frac{S_{diapers, baby \ bottle} + S_{diapers, baby \ formula}}{2}$$

Could also weight them differently based on recency of purchase!

Then all we need to do is find the item with the highest average score!

What do you see as pros / cons of the item-item approach to recommendations?

Solution 2 (Item-Item) Pros / Cons

Pros:

Personalizes to item (incorporating purchase history also personalizes to the user)

Cons:

Can still suffer from feedback loops

- (As can all recommender systems – but in some cases it's worse than others)

Scalability (must store entire item-item matrix)

Cold-Start Problem

- What do you do about new *items*, with no data?

Customers Who Bought This Item Also Bought

Predictive Analytics For

Dummies

Panerhack

Anasse Bari

***** 29

\$17.72 **/Prime**

<

PREDICTIVE AMALYTICS THE LINE Predictive Analytics: The

> Eric Siegel

Econometrics Hardcover \$16.88 *Prime*

Power to Predict Who

#1 Best Seller (in

Quantifying the User Experience: Practical... > Jeff Sauro ★★★★★ 8 Paperback \$40.63 *√Prime*

LOOK INSIDE!		
rketing IALYTICS	ĺ	
Vandea Corgin		

Marketing Analytics:

Strategic Models and...

> Stephan Sorger

***** 17 29

\$50.52 *Prime*

Paperback

Data Driven Marketing For Dummies > David SemmeIroth Paperback \$20.49 *\Prime*

Solution 3: Feature-Based

Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Genre	Year	Director	
Action	1994	Quentin Tarantino	
Sci-Fi	1977	George Lucas	

Define weights on these features for **all users** (global) $w_{G} \in \mathbb{R}^{d}$

Fit linear model

Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Genre	Year	Director	
Action	1994	Quentin Tarantino	
Sci-Fi	1977	George Lucas	

Define weights on these features for **all users** (global) $w_{G} \in \mathbb{R}^{d}$

Fit linear model

$$\hat{r}_{uv} = w_G^T h(v) = \sum_i w_{G,i} h_i(v)$$
$$\hat{w}_G = argmin_w \frac{1}{\# ratings} \sum_{u,v:r_{uv}\neq ?} (w_G^T h(v) - r_{uv})^2 + \lambda ||w_G||$$

Personalization: Option A

Add user-specific features to the feature vector!

Genre	Year	Director	 Gender	Age	
Action	1994	Quentin Tarantino	 F	25	
Sci-Fi	1977	George Lucas	 М	42	

Personalization: Option B

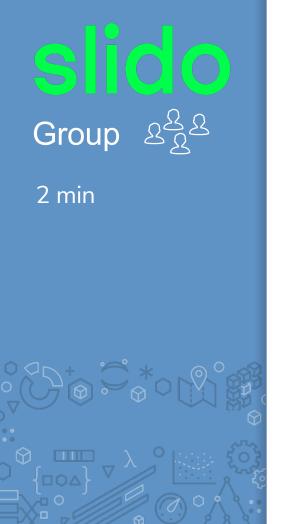
Include a user-specified deviation from the global model.

$$\hat{r}_{uv} = (\widehat{w}_G + \widehat{w}_u)^T h(v)$$

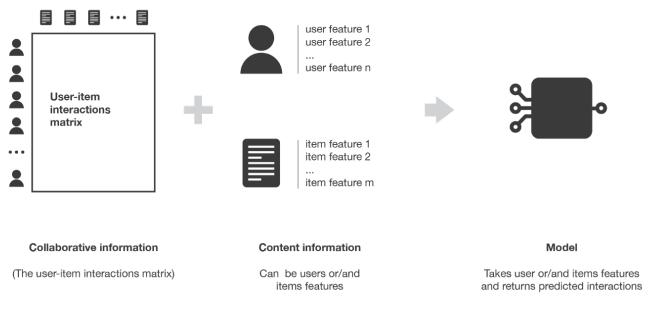
Start a new user at $\hat{w}_u = 0$, update over time.

OLS on the residuals of the global model

Bayesian Update (start with a probability distribution over user-specific deviations, update as you get more data)



Will feature-based recommender systems suffer from the cold start problem? Why or why not? What about other pros/cons of feature-based?



Solution 3 (Feature-Based) Pros / Cons

Pros:

No cold-start issue!

- Even if a new user/item has no purchase history, you know features about them.

Personalizes to the user and item.

Scalable (only need to store weights per feature)

Can add arbitrary features (e.g., time of day)

Cons:

Hand-crafting features is very tedious and unscalable igodot

Recap

Dimensionality Reduction & PCA:

Why and when it's important High level intuition for PCA Linear Projections & Reconstruction Eigenvectors / Eigenvalues

Recommender Systems:

Sol 0: Popularity Sol 1: Nearest User (User-User)

Sol 2: "People who bought this also bought" (item-item)

Sol 3: Feature-Base

Next Time (Rec System Continued):

Sol 4: Matrix Factorization

Sol 5: Hybrid Model

Addressing common issues with Recommender Systems

Evaluating Recommender Systems

50