CSE/STAT 416

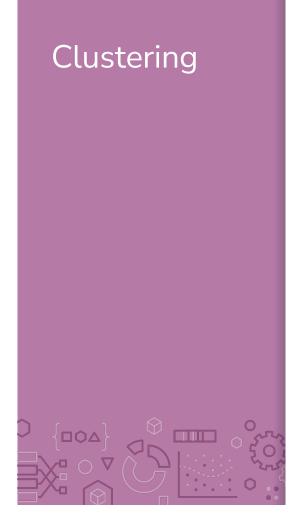
Other Clustering Methods Pre-Class Videos

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

May 17, 2024

Pre-Class Video 1

Clustering Recap




```
SPORTS
```


WORLD NEWS

Define Clusters

In their simplest form, a **cluster** is defined by The location of its center (**centroid**) Shape and size of its **spread**

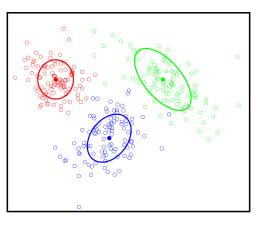
Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

 x_i gets assigned $z_i \in [1, 2, ..., k]$

Usually based on closest centroid

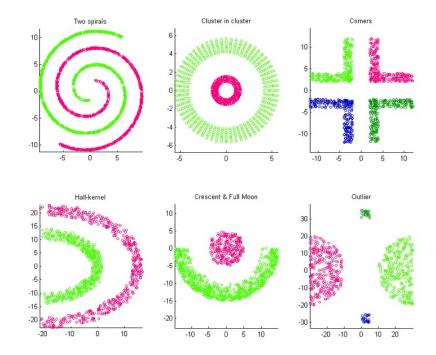
Will define some kind of score for a clustering that determines how good the assignments are

Based on distance of assigned examples to each cluster



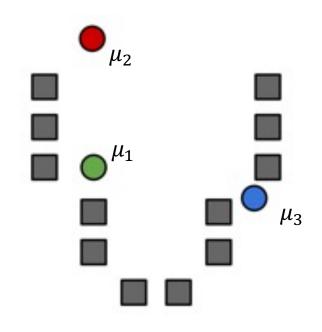
Not Always Easy

There are many clusters that are harder to learn with this setup Distance does not determine clusters



Step 0

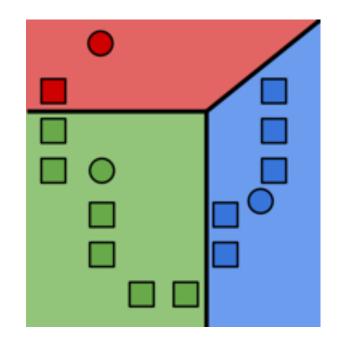
Start by choosing the initial cluster centroids A common default choice is to choose centroids at random Will see later that there are smarter ways of initializing



Step 1

Assign each example to its closest cluster centroid

$$z_i \leftarrow \operatorname*{argmin}_{j \in [k]} \left| \left| \mu_j - x_i \right| \right|^2$$

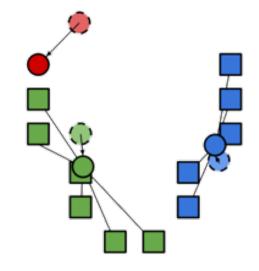


Step 2

Update the centroids to be the mean of all the points assigned to that cluster.

$$\mu_j \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$$

Computes center of mass for cluster!



Smart Initializing w/ k-means++

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

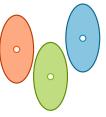
- Choose first cluster μ_1 from the data uniformly at random
- 2. For the current set of centroids (starting with just μ_1), compute the distance between each datapoint and its closest centroid
- 3. Choose a new centroid from the remaining data points with probability of x_i being chosen proportional to $d(x_i)^2$
- 4. Repeat 2 and 3 until we have selected k centroids

Problems with k-means

In real life, cluster assignments are not always clear cut E.g. The moon landing: Science? World News? Conspiracy?

Because we minimize Euclidean distance, k-means assumes all the clusters are spherical

We can change this with weighted Euclidean distance Still assumes every cluster is the same shape/orientation



Failure Modes of k-means

If we don't meet the assumption of spherical clusters, we will get unexpected results

disparate cluster sizes verlapping clusters different shaped/oriented clusters

Mixture Models

A much more flexible approach is modeling with a **mixture model**

Model each cluster as a different probability distribution and learn their parameters

E.g. Mixture of Gaussians

Allows for different cluster shapes and sizes

Typically learned using Expectation Maximization (EM) algorithm

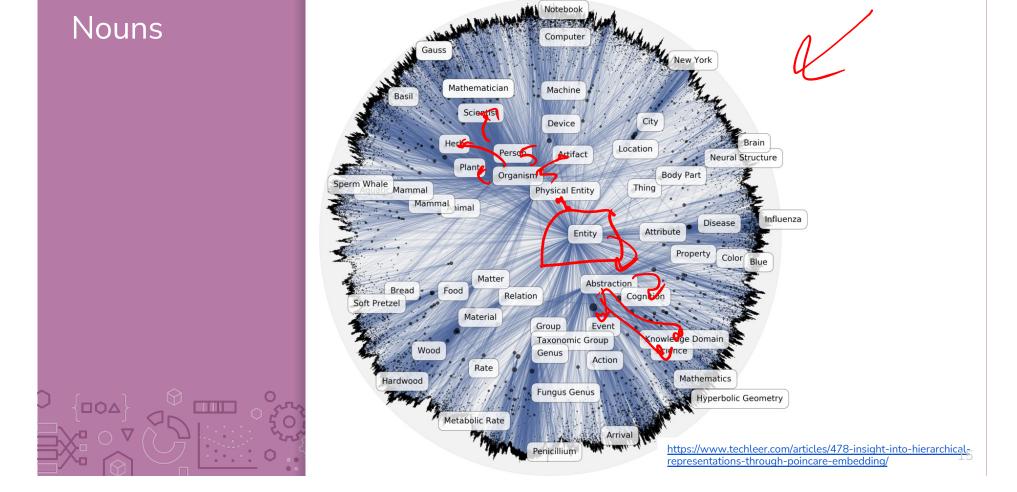
Allows soft assignments to clusters

54% chance document is about world news, 45% science, 1% conspiracy theory, 0% other

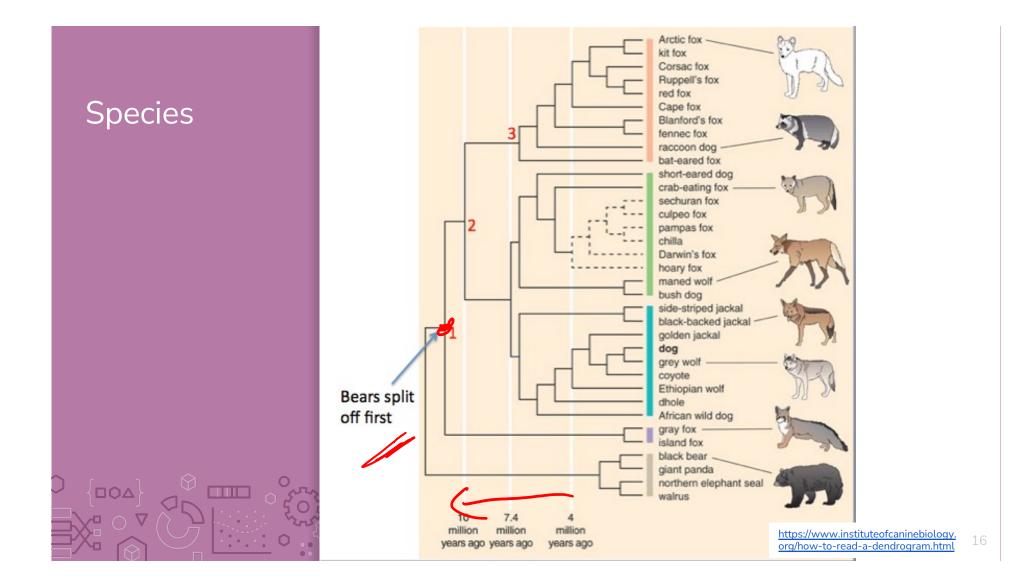
Pre-Class Video 2

Divisive Clustering

Hierarchical Clustering



Lots of data is hierarchical by nature



Motivation

If we try to learn clusters in hierarchies, we can

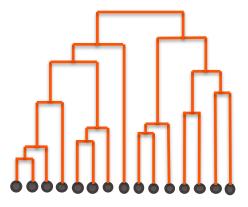
Avoid choosing the # of clusters beforehand

Use **dendrograms** to help visualize different granularities of clusters

Allow us to use any distance metric

- K-means requires Euclidean distance

Can often find more complex shapes than k-means

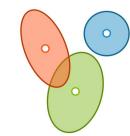


Finding Shapes

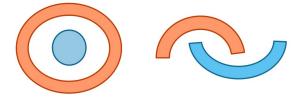
k-means



Mixture Models



Hierarchical Clustering



Types of Algorithms

Divisive, a.k.a. top-down

Start with all the data in one big cluster and then recursively split the data into smaller clusters

Example: recursive k-means

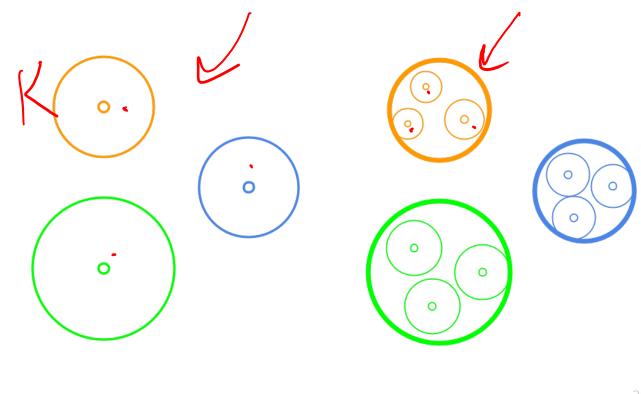
Agglomerative, a.k.a. bottom-up:

Start with each data point in its own cluster. Merge clusters until all points are in one big cluster.

Example: single linkage clustering

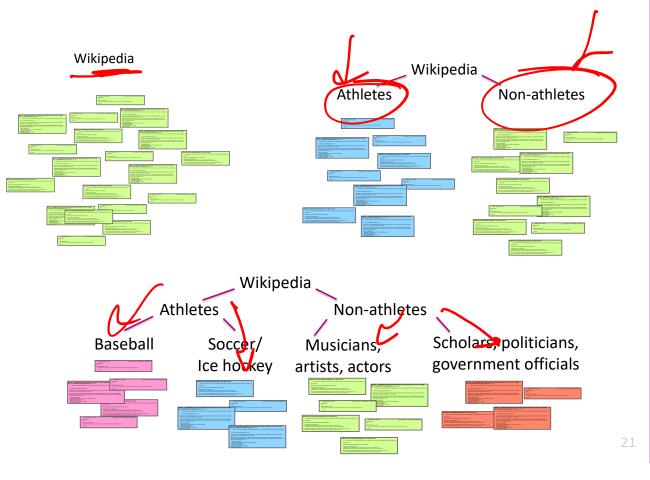
Divisive Clustering

Start with all the data in one cluster, and then repeatedly run kmeans to divide the data into smaller clusters. Repeatedly run kmeans on each cluster to make sub-clusters.



Example

Using Wikipedia



Choices to Make

For divisive clustering, you need to make the following choices:
Which algorithm to use (e.g., k-means)
How many clusters per split
When to split vs when to stop
Max cluster size
Number of points in cluster falls below threshold
Max cluster radius
distance to furthest point falls below threshold
Specified # of clusters
split until pre-specified # of clusters is reached

CSE/STAT 416

Other Clustering Methods

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

May 17, 2024

? Questions? Raise hand

Define Clusters

In their simplest form, a **cluster** is defined by The location of its center (**centroid**) Shape and size of its **spread**

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

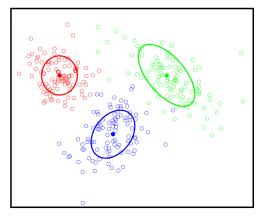
 x_i gets assigned $z_i \in [1, 2, ..., k]$

Usually based on closest centroid

Will define some kind of objective function for a clustering that determines how good the assignments are

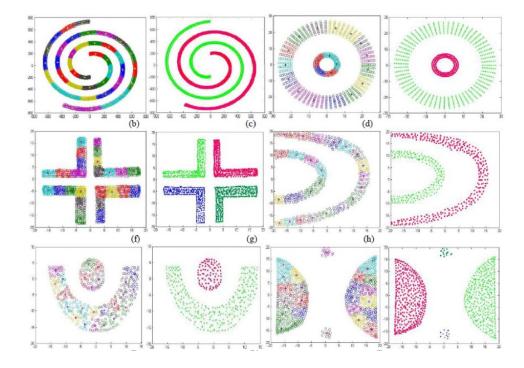
Based on distance of assigned examples to each cluster.

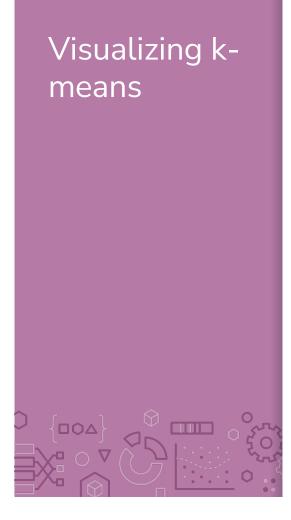
Close distance reflects strong similarity between datapoints.



Not Always Easy

There are many clusters that are harder to learn with this setup Distance does not determine clusters





https://www.naftaliharris.com/blog/visualizing-k-meansclustering/

Smart Initializing w/ k-means++

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

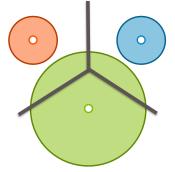
Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

- 1. Choose first cluster μ_1 from the data uniformly at random
- 2. For each datapoint x_i , compute the distance between x_i and the closest centroid from the current set of centroids (starting with just μ_i). Denote that distance $d(x_i)$.
- 3. Choose a new centroid from the remaining data points, where the probability of x_i being chosen is proportional to $d(x_i)^2$.
- 4. Repeat 2 and 3 until we have selected *k* centroids.

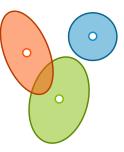
Failure Modes of k-means

If we don't meet the assumption of spherical clusters, we will get unexpected results



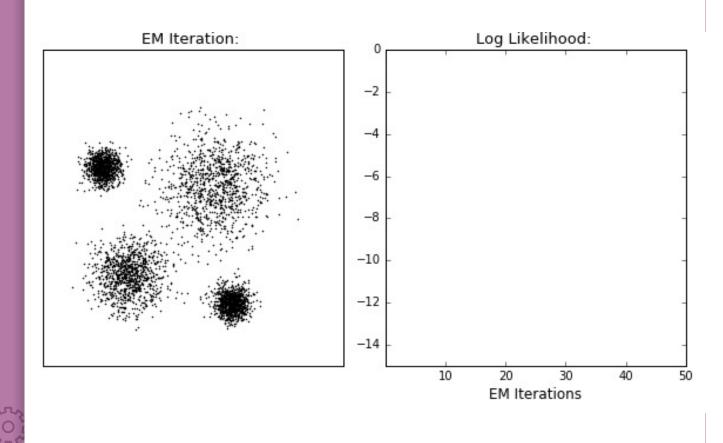
disparate cluster sizes

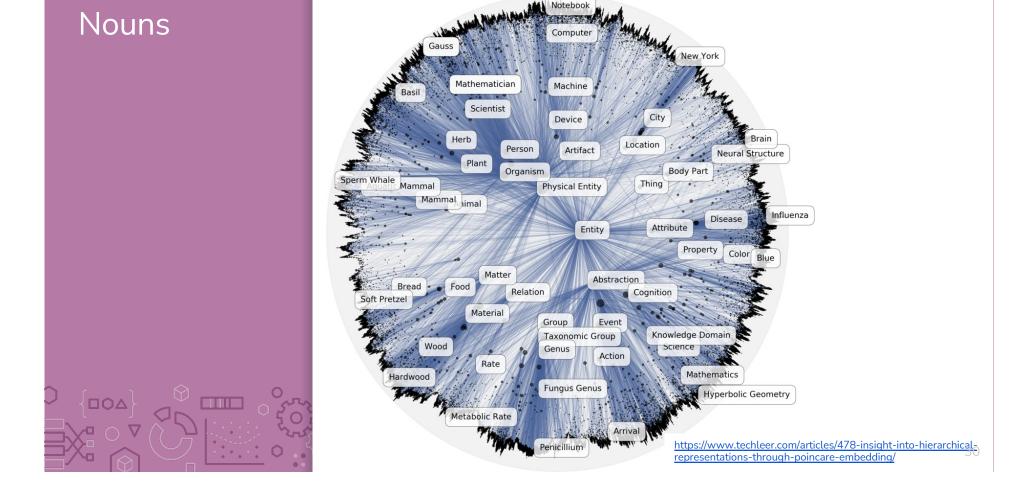
overlapping clusters



different shaped/oriented clusters

Visualizing Gaussian Mixture Models





Lots of data is hierarchical by nature

Types of Algorithms

Divisive, a.k.a. top-down

Start with all the data in one big cluster and then recursively split the data into smaller clusters

Example: recursive k-means

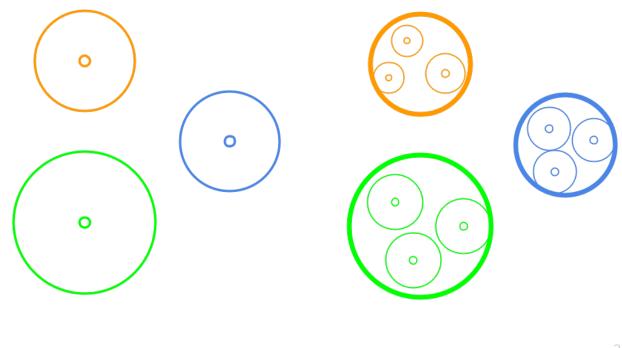
Agglomerative, a.k.a. bottom-up:

Start with each data point in its own cluster. Merge clusters until all points are in one big cluster.

Example: single linkage clustering

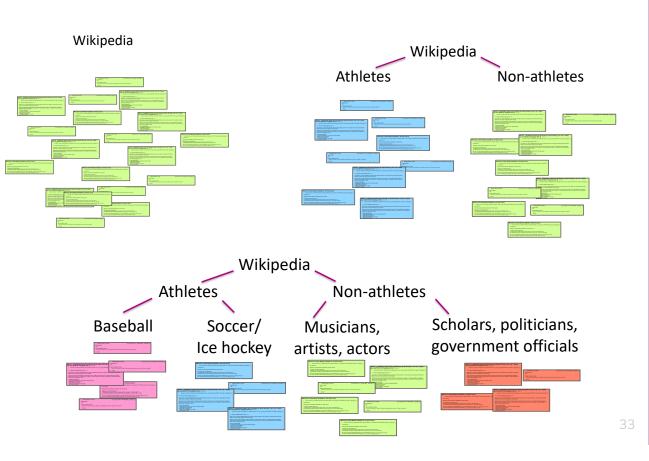
Divisive Clustering

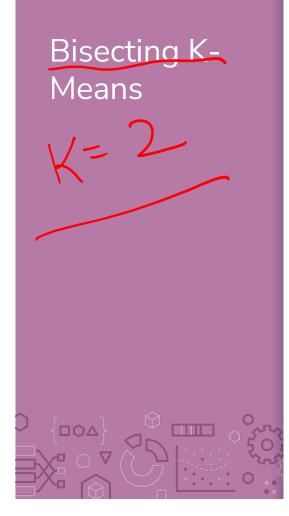
Start with all the data in one cluster, and then repeatedly run kmeans to divide the data into smaller clusters. Repeatedly run kmeans on each cluster to make sub-clusters.

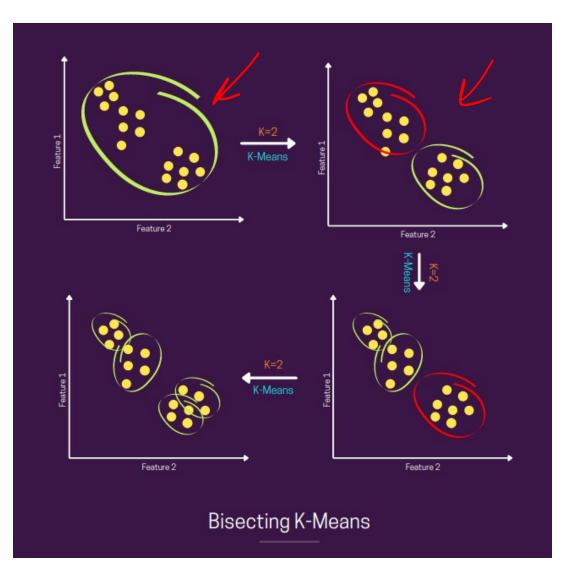


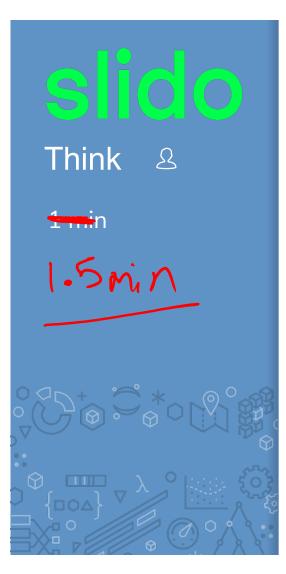
Example

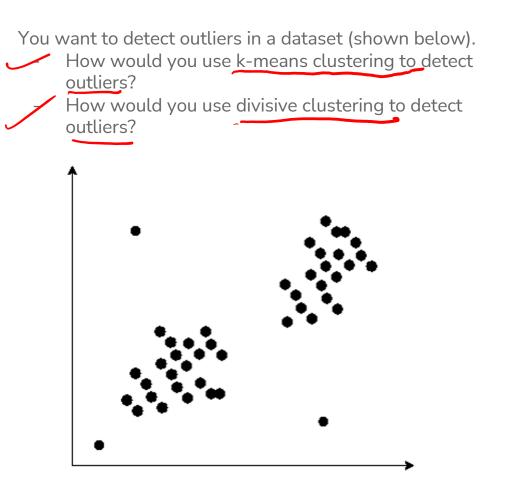
Using Wikipedia

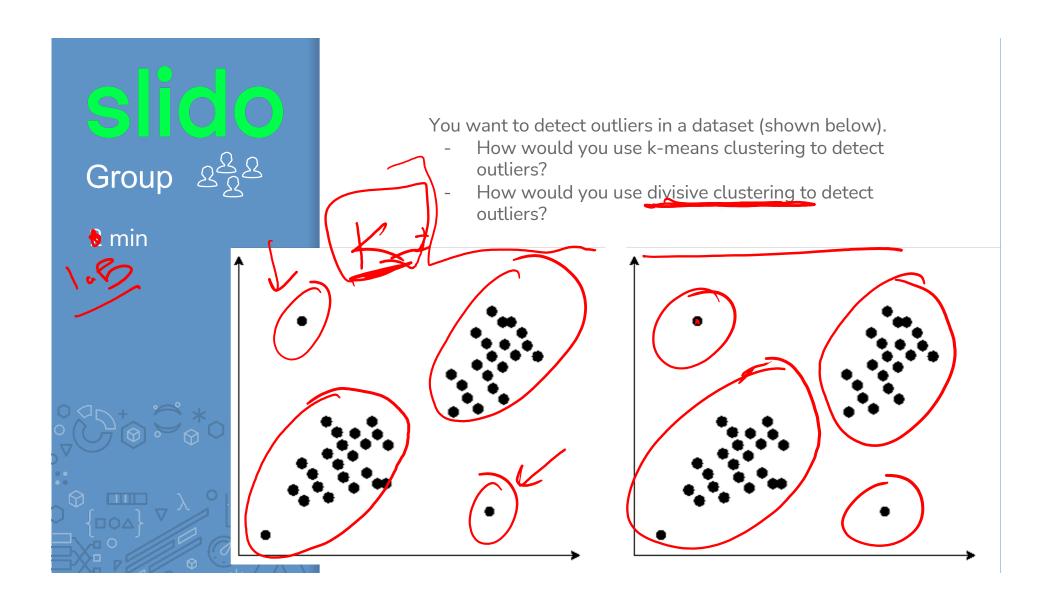




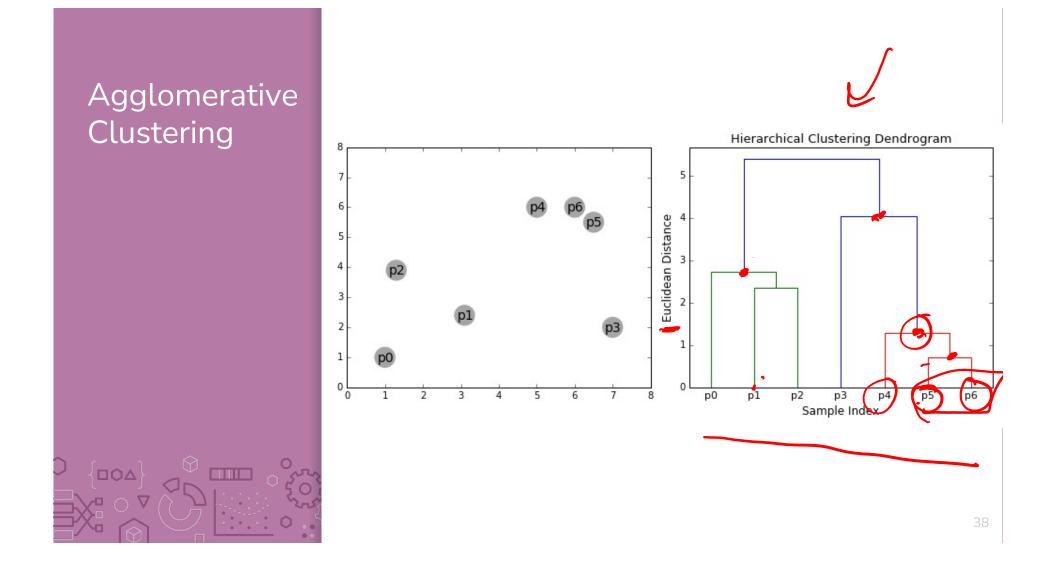








Agglomerative Clustering



Agglomerative Clustering

Algorithm at a glance

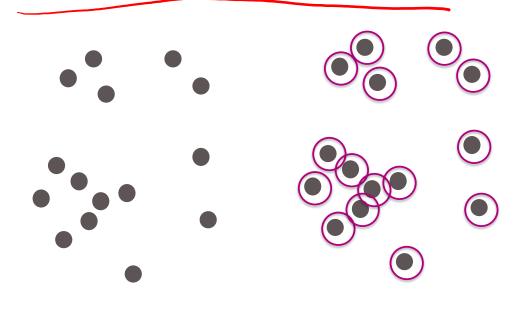
- 1. Initialize each point in its own cluster
- 2. Define a distance metric between clusters

While there is more than one cluster

3. Merge the two closest clusters

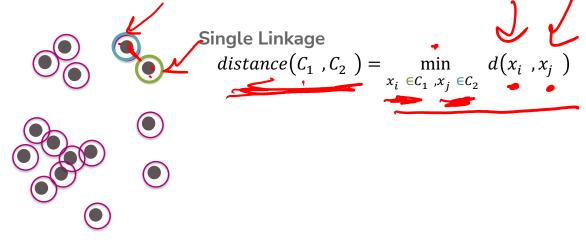
Step 1

1. Initialize each point to be its own cluster

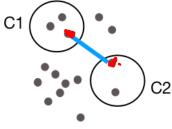


Step 2

2. Define a distance metric between clusters



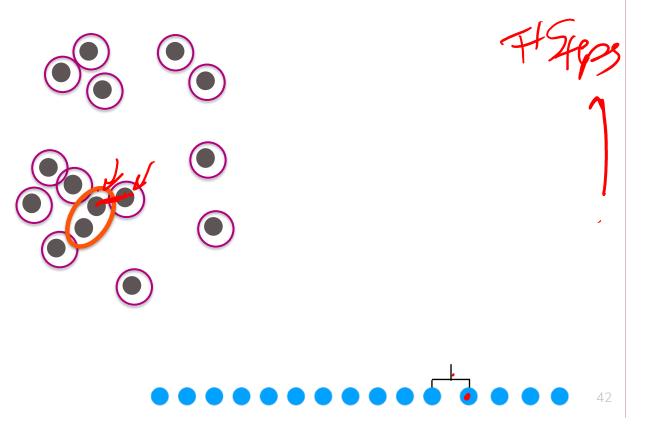
This formula means we are defining the distance between two clusters as the smallest distance between any pair of points between the clusters.

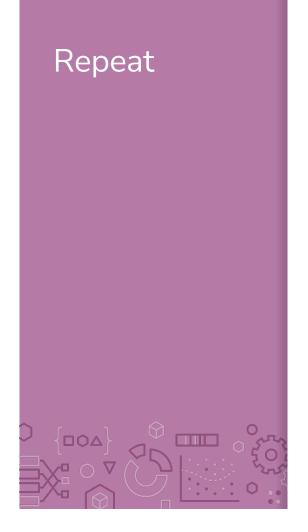


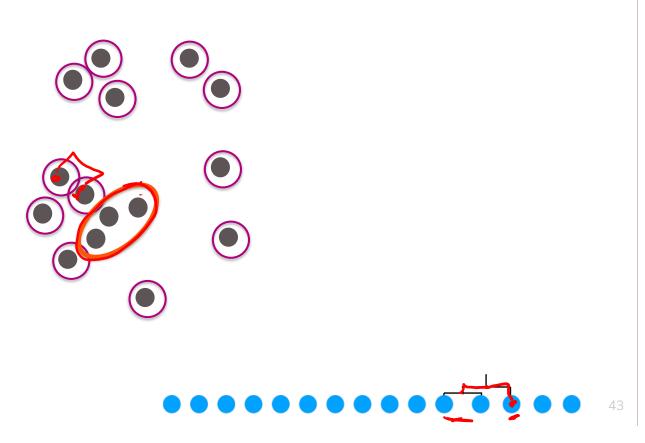
41

Step 3 {000}

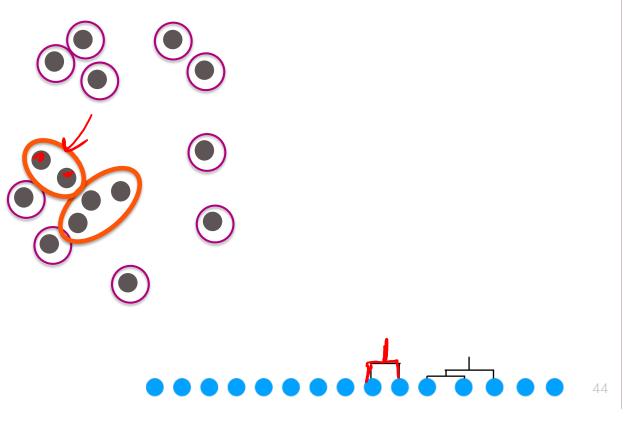
Merge closest pair of clusters

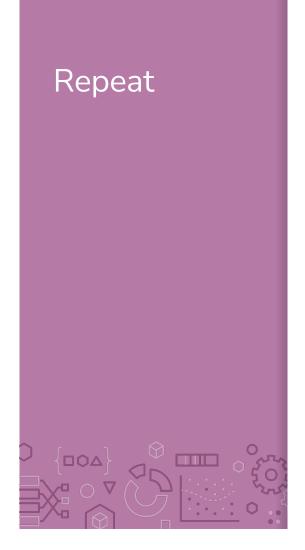


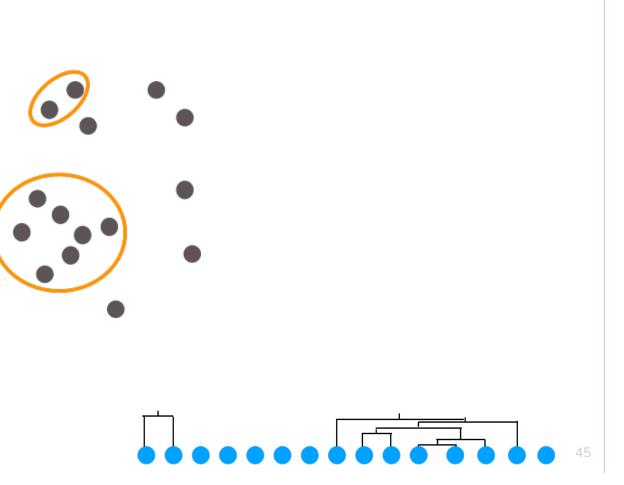




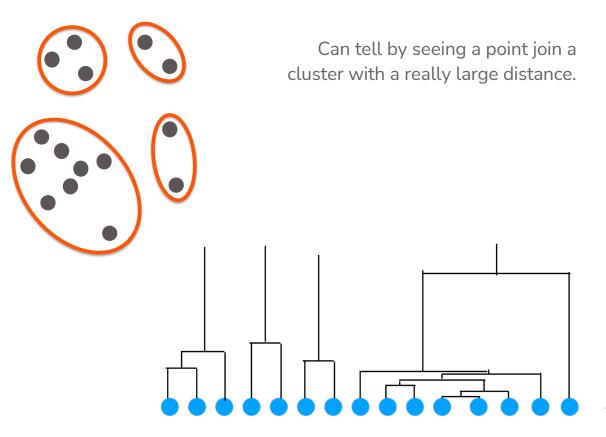
Notice that the height of the dendrogram is growing as we group points farther from each other







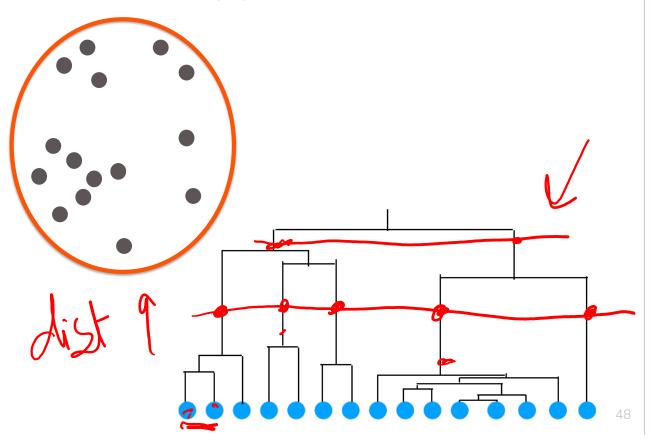
Looking at the dendrogram, we can see there is a bit of an outlier!

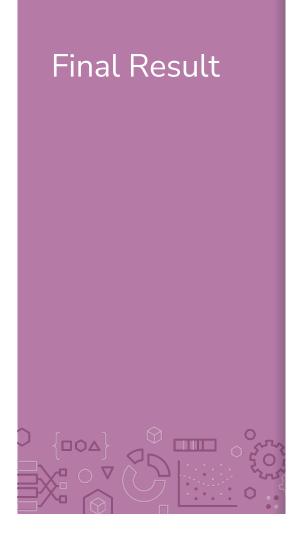


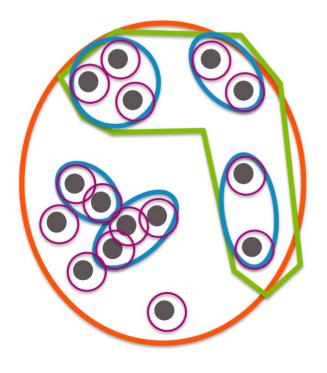
46

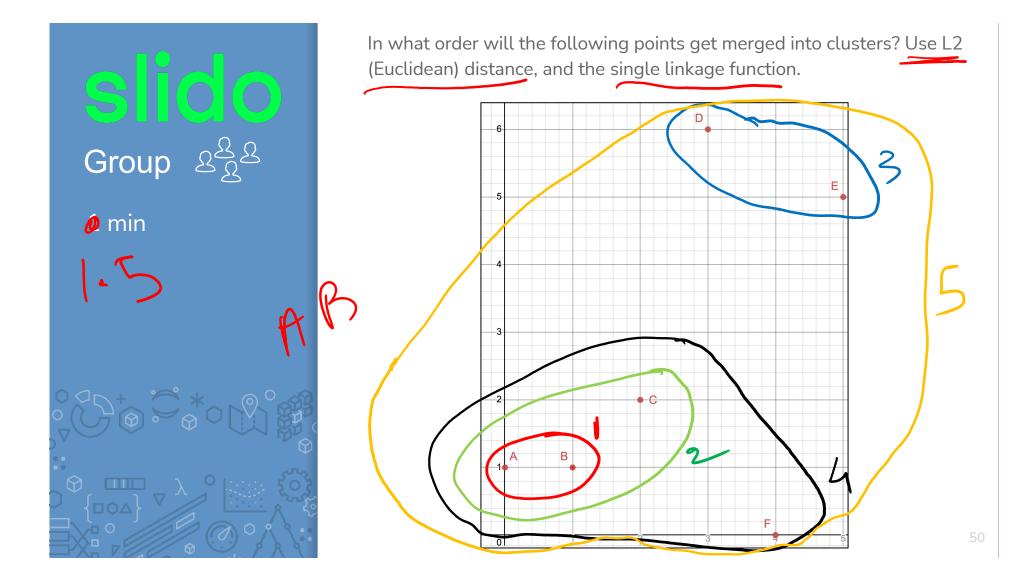
 The tall links in the dendrogram show us we are merging clusters that are far away from each other

Final result after merging all clusters





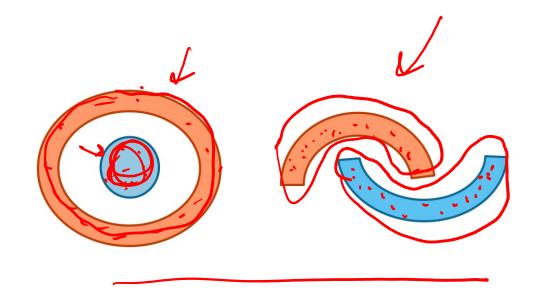




Dendrograms

Agglomerative Clustering

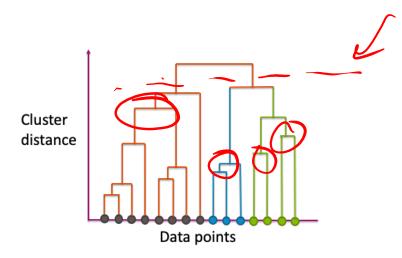
With agglomerative clustering, we are now very able to learn weirder clusterings like

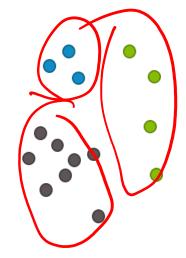


Dendrogram

x-axis shows the datapoints (arranged in a very particular order)

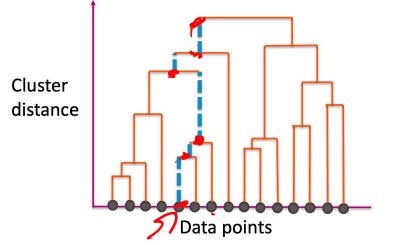
y-axis shows distance between merged clusters





Dendrogram

The path shows you all clusters that a single point belongs and the order in which its clusters merged

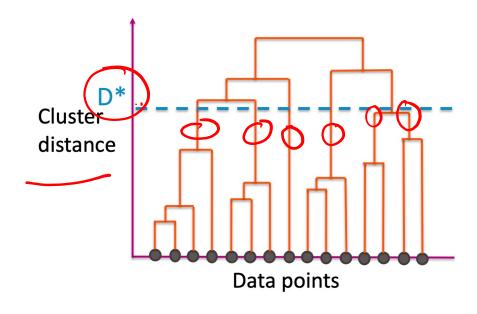


Cut Dendrogram

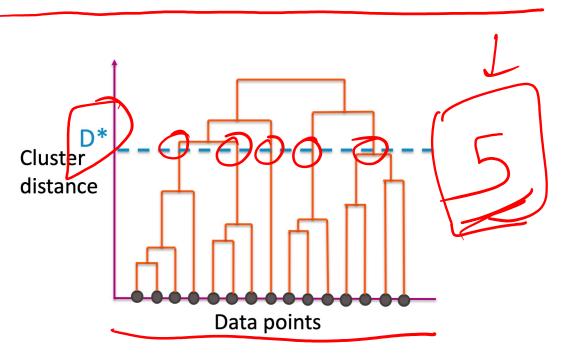
Choose a distance D^* to "cut" the dendrogram

Use the largest clusters with distance $< D^*$

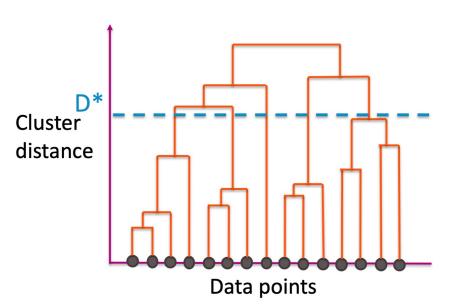
Usually ignore the idea of the nested clusters after cutting



How many clusters would we have if we use this threshold?

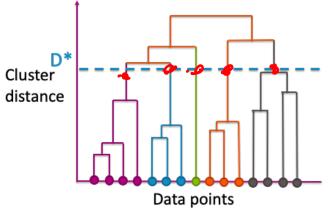


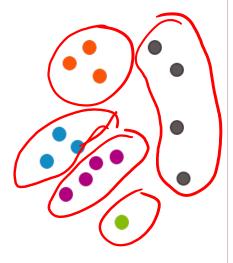
How many clusters would we have if we use this threshold?

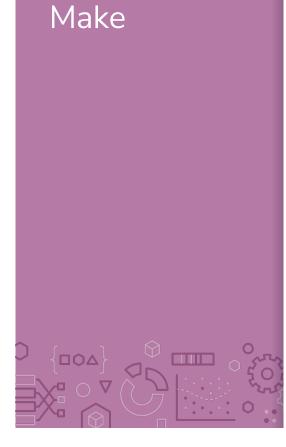


Cut Dendrogram

Every branch that crosses D^* becomes its own cluster

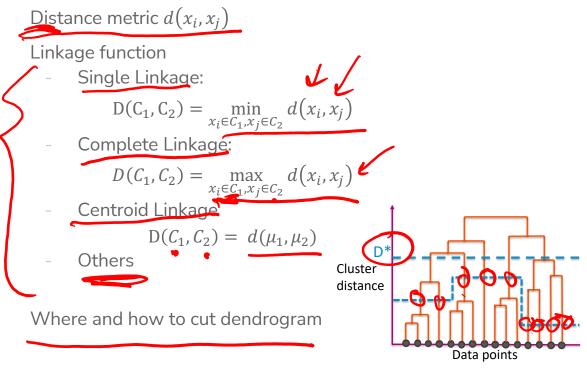




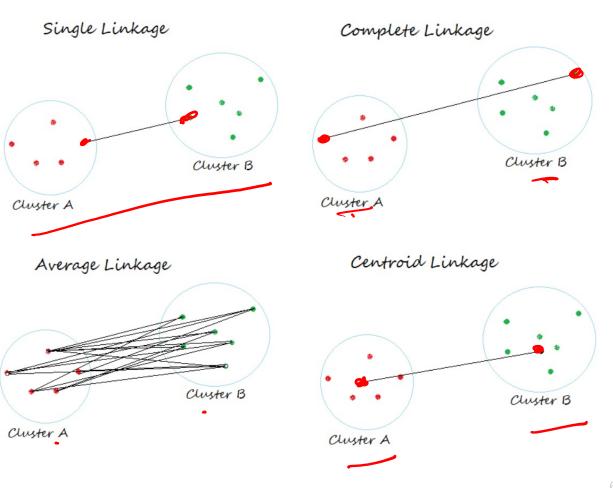


Choices to

For agglomerative clustering, you need to make the following choices:



Linkage Functions



51

Practical Notes

For visualization, generally a smaller # of clusters is better

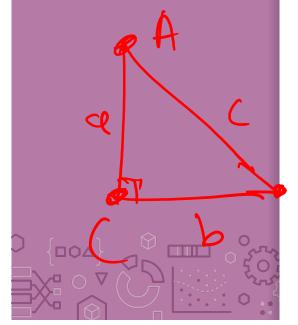
For tasks like outlier detection, cut based on:

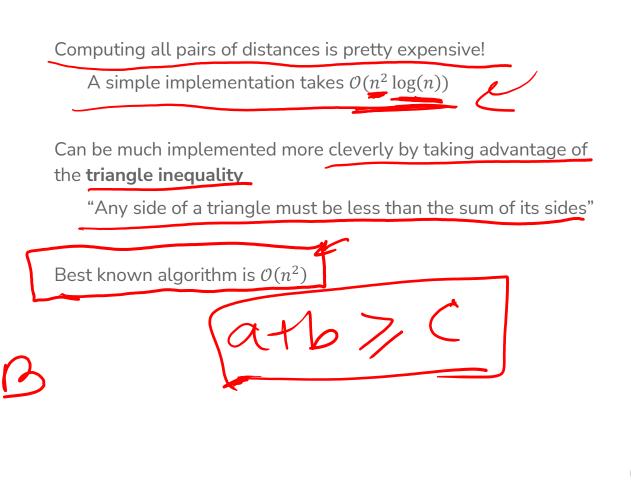
Distance threshold

Or some other metric that tries to measure how big the distance increased after a merge

No matter what metric or what threshold you use, no method is "incorrect". Some are just more useful than others.

Computational Cost of Agglomerative Clustering





k-means vs. Ágglomerative Clustering

K-means is more efficient on big data than hierarchical clustering.

Initialization changes results in k-means, not in agglomerative clustering has reproducible results.

K-means works well only for hyper-spherical clusters, agglomerative clustering can handle more complex cluster shapes.

K-means requires selecting a number of clusters beforehand. In agglomerative clustering, you can decide on the number of clusters afterwards using the dendrogram.

Concept Inventory This week we want to practice recalling vocabulary. Spend minutes trying to write down all the terms for concepts we have learned in this class and try to bucket them into the following categories.

Regression Classification Deep Learning Document Retrieval Misc – For things that fit in multiple places or none of the above

You don't need to define/explain the terms for this exercise, but you should know what they are!

Try to do this for at least 5 minutes from recall before looking at your notes!

Recap

Problems with k-means

Mixture Models

Hierarchical clustering

Divisive Clustering

Agglomerative Clustering

Dendrograms