CSE/STAT 416

k-means Clustering

Tanmay Shah
Paul G. Allen School of Computer Science & Engineering
University of Washington

May 15, 2024

? Questions? Raise hand

Clustering Overview

Recap

- For the past 7 weeks, we have covered different supervised learning algorithms
- Now, we're going to explore **unsupervised learning** methods where don't have labels / outputs in your datasets anymore.
- Note that several of the concepts you learnt for supervised learning, such as cross-validation, overfitting, bias-variance tradeoff, accuracy, error, etc. no longer apply in unsupervised learning!

Unsupervised Learning

- Q unsupervised
- unsupervised learning
- unsupervised recommender system
- unsupervised learning recommendation system
- unsupervised learning example
- unsupervised machine learning
- q unsupervised
- Q unsupervised learning algorithms
- Unsupervised Sitcom
- q unsupervised clustering
- Q unsupervised vs supervised learning

- A type of machine learning that detects underlying patterns in **unlabeled** data.
- Examples of unsupervised learning tasks:
 - Cluster similar articles together.

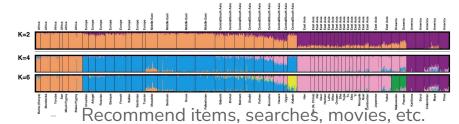
Coupled indoor navigation for people who are blind

A Nanavati, XZ Tan, A Steinfeld - Companion of the 2018 ACM/IEEE ..., 2018 - dl.acm.org

This paper presents our design of an autonomous navigation system for a mobile robot that
guides people who are blind and low vision in indoor settings. It begins by presenting user ...

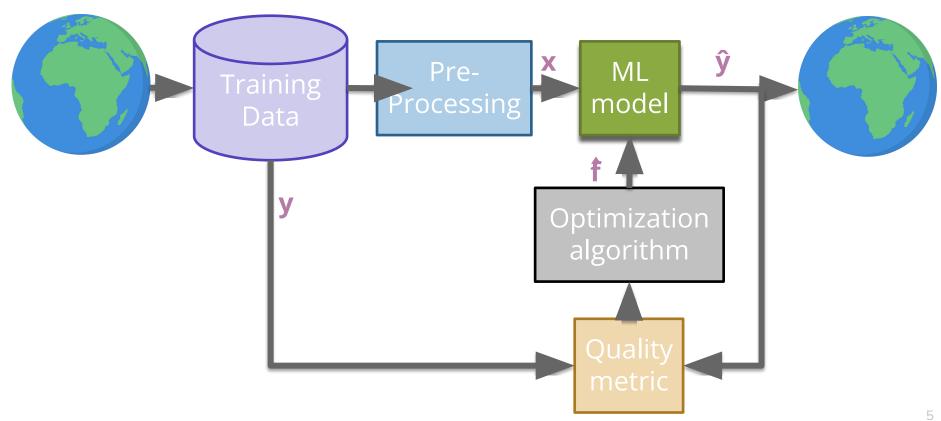
☆ Save 55 Cite Cited by 11 (Related articles)

Cluster gene sequences.



Products related to this item

Sponsored (i)



Clustering

SPORTS

WORLD NEWS

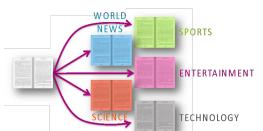
Note that we're not talking about learning user preferences (yet – come back next week 😌).

Our case study is **document retrieval**. Given that someone read a particular article, what similar articles would you recommend (without personalization)?

Labeled Data

What if the labels are known? Given labeled training data.

Can do multi-class classification methods to predict label.



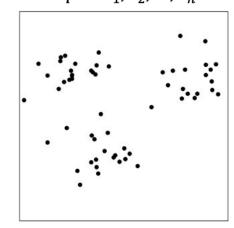
However, not all articles fit cleanly into one label.

Further, oftentimes real-world data doesn't have labels.

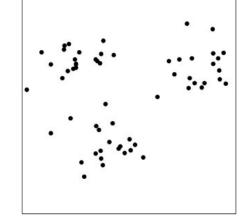
Unlabeled Data

- In many real world contexts, there aren't clearly defined labels so we won't be able to do classification
- We will need to come up with methods that uncover structure from the (unlabeled) input data X.
- Clustering is an automatic process of trying to find related groups within the given dataset.

Input: x_1, x_2, \dots, x_n



Output: z_1, z_2, \dots, z_n



Define Clusters

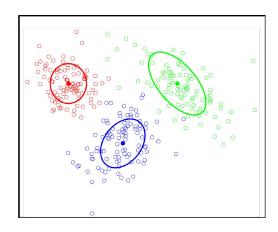
In their simplest form, a cluster is defined by

- The location of its center (centroid)
- Shape and size of its spread

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

- x_i gets assigned $z_i \in [1, 2, ..., k]$
- Usually based on closest centroid

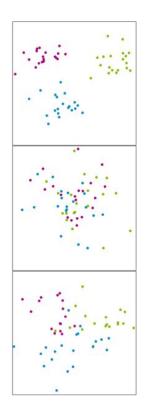
Will define some kind of objective function for a clustering that determines how good the assignments are



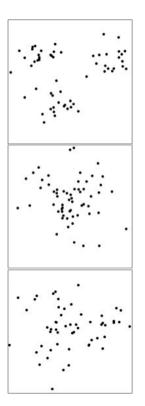
When Might This Work?

Clustering is easy when distance captures the clusters.

Ground Truth (not visible)



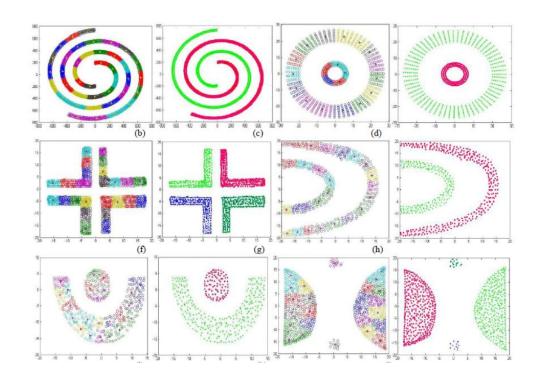
Given Data



Not Always Easy

There are many clusters that are harder to learn with this setup

Distance does not determine clusters



Think of 1-2 problems that you might want to use clustering for.

For each problem, describe:

- Why unsupervised learning is the right approach.
- What the input features are for the clustering algorithm.
- What clusters you hypothesize would emerge.

K-Means Clustering

K-Means Clustering Algorithm

- We define the criterion of assigning point to a cluster based on **its distance**.
- Shorter distance => Better Clustering

Algorithm

Given a dataset of n datapoints and a particular choice of k

Step 0: Initialize cluster centroids randomly

Repeat until convergence:

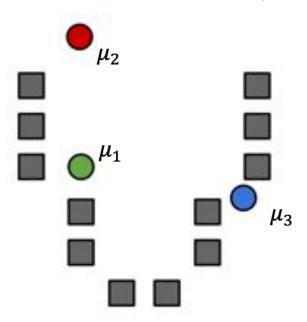
Step 1: Assign each example to its closest cluster centroid

Step 2: Update the centroids to be the average of all the points assigned to that cluster

Step 0

Start by choosing the initial cluster centroids

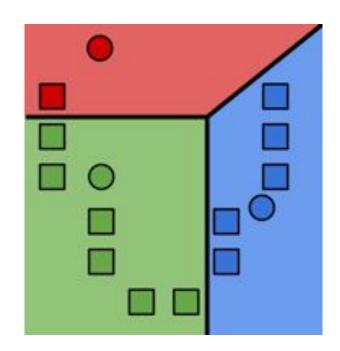
- A common default choice is to choose centroids $\mu_1, ..., \mu_k$ randomly
- Will see later that there are smarter ways of initializing



Step 1

Åssign each example to its closest cluster centroid For i = 1 to n

$$z_i \leftarrow \underset{j \in [k]}{\operatorname{argmin}} \left| \left| \mu_j - x_i \right| \right|_2^2$$

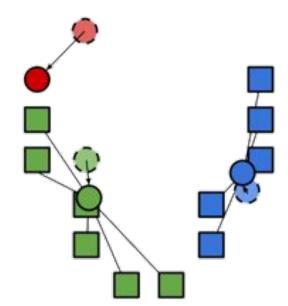


Step 2

Update the centroids to be the mean of points assigned to that cluster.

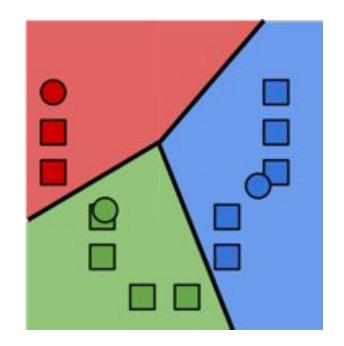
$$\mu_j = \frac{\sum_{i=1}^n \mathbf{1} \{ z_i = j \} x_i}{\sum_{i=1}^n \mathbf{1} \{ z_i = j \}}$$

Computes center of mass for cluster!



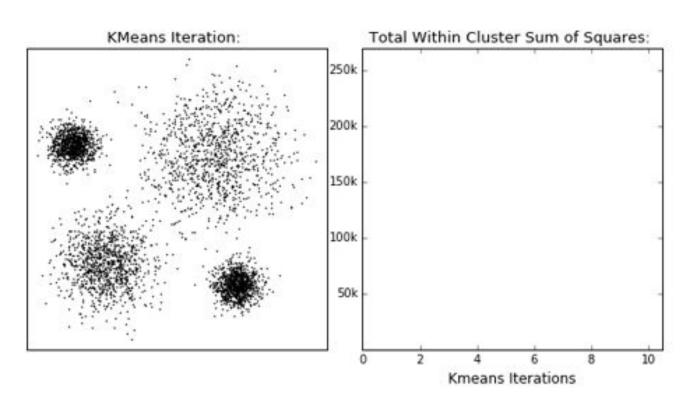
Repeat Steps 1 and 2 until convergence

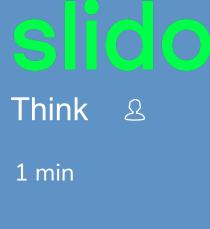
Repeat until convergence



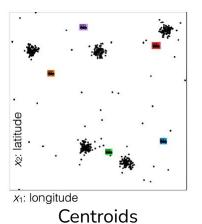
Stopping Conditions

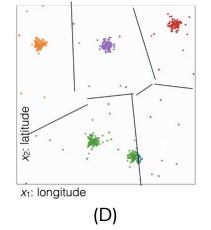
- Cluster assignments haven't changed
- Centroids haven't changed
- Some number of max iterations have been passed

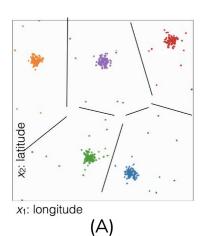


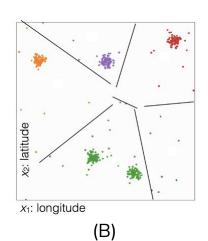


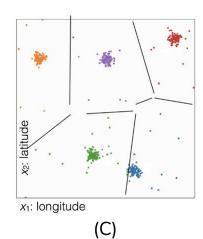
What cluster assignment would result from these centroids?



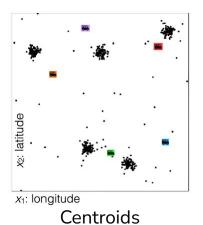


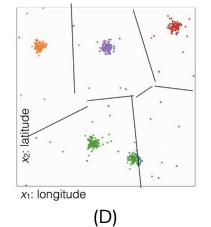


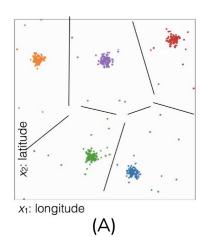


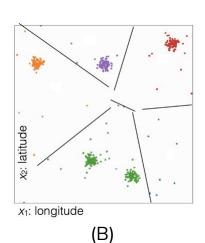


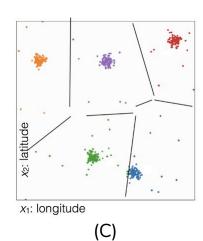
What cluster assignment would result from these centroids?









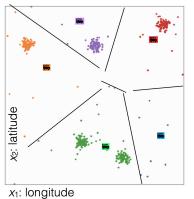


sli.do #cs416

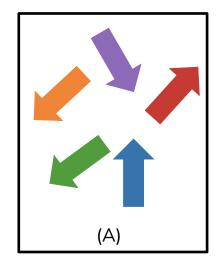
1 min

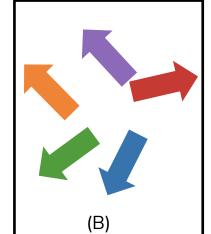
sli.do #cs416

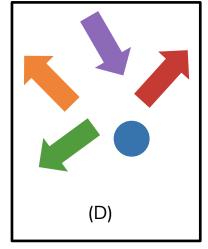
In what direction would each of the centroids (roughly) move?

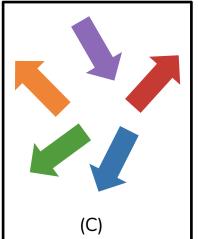


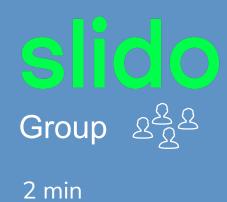
Cluster Assignments



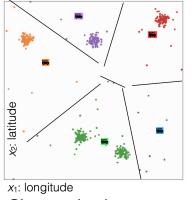




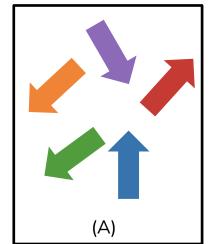


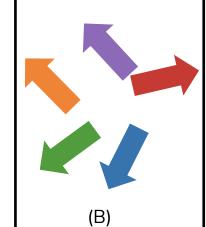


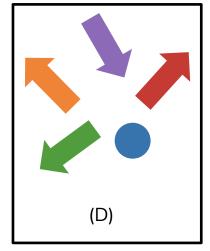
In what direction would each of the centroids (roughly) move?

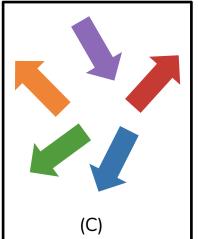


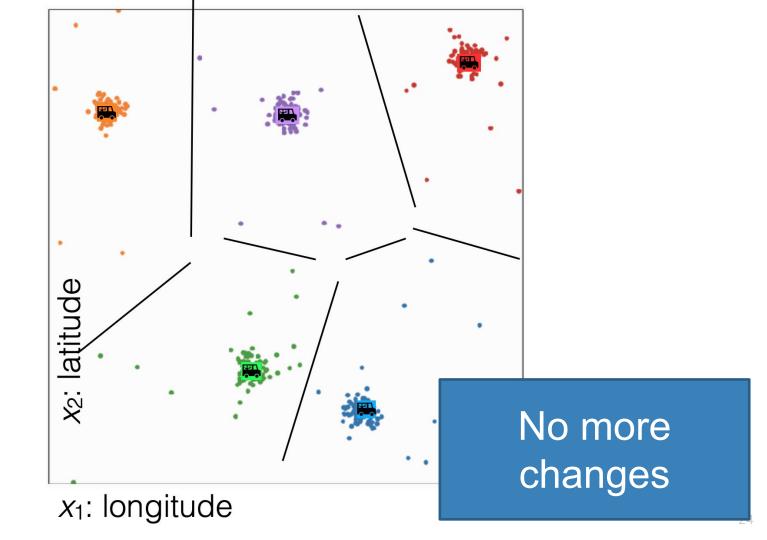
Cluster Assignments



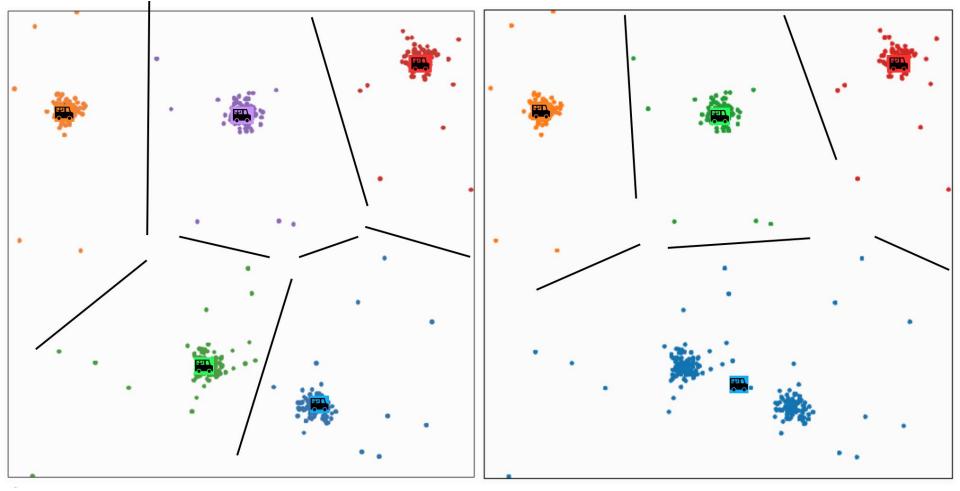








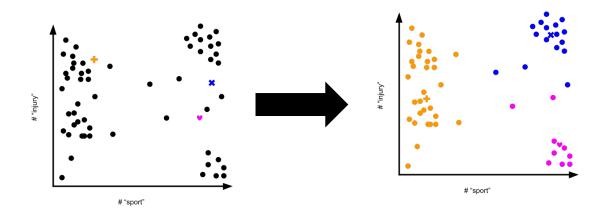
Different k gives different results



Sign sign

1.5 min

- You are clustering news articles using the features "# sport" and "# injury." How would you interpret these clusters?
- "This is a cluster of ...[some characterization]... articles."



📆 Brain Break

Effect of Initialization

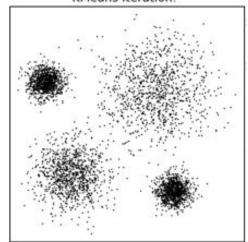
1.5 min

sli.do #cs416

What convergence guarantees do you think we will have with k-means?

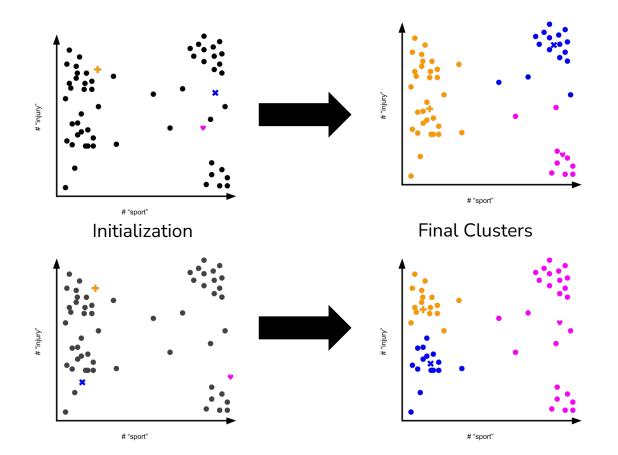
- Converges to the global optimum
- Converges to a local optima
- None

KMeans Iteration:



Effects of Initialization

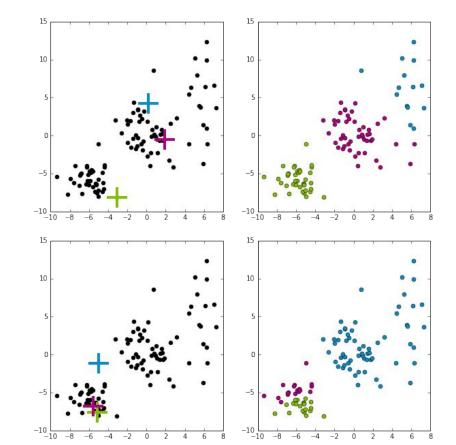
Results heavily depend on initial centroids



Effect of initialization

What does it mean for something to converge to a local optima?

- Some initialization can be bad and affect the quality of clustering
- Initialization will greatly impact results!



Smart Initializing w/ k-means++

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

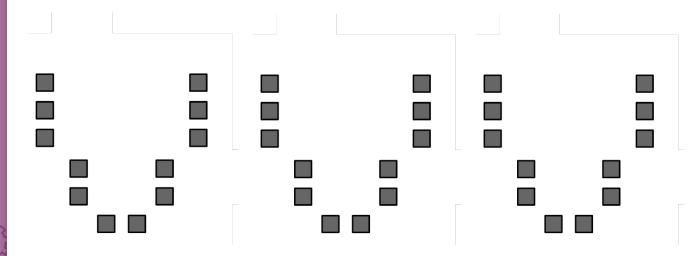
- 1. Choose first cluster μ_1 from the data uniformly at random
- 2. For each datapoint x_i , compute the distance between x_i and the closest centroid from the current set of centroids (starting with just μ_i). Denote that distance $d(x_i)$.
- 3. Choose a new centroid from the remaining data points, where the probability of x_i being chosen is proportional to $d(x_i)^2$.
- 4. Repeat 2 and 3 until we have selected k centroids.

k-means++ Example

Start by picking a point at random

Then pick points proportional to their distances to their centroids

This tries to maximize the spread of the centroids!



k-means++ Pros / Cons

Pros

- Improves quality of local minima
- Faster convergence to local minima

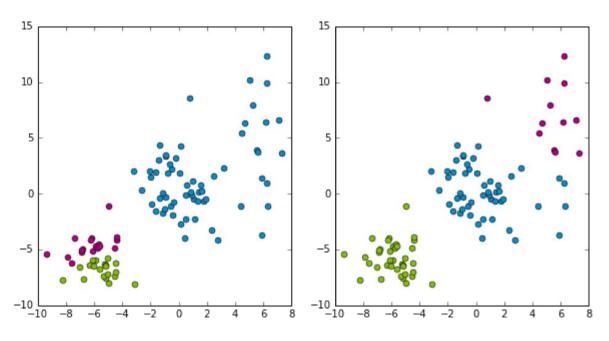
Cons

 Computationally more expensive at beginning when compared to simple random initialization

Assessing Performance

Which Cluster?

Which clustering would I prefer?

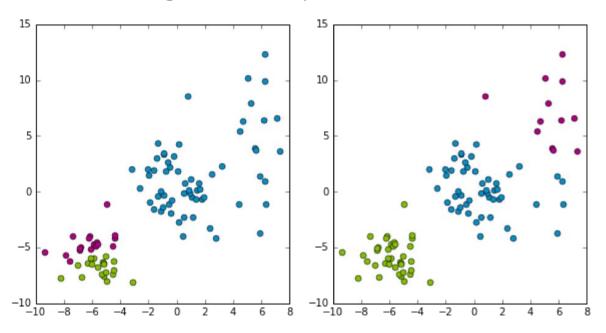


Don't know, there is no "right answer" in clustering 💁 .

Depends on the practitioner's domain-specific knowledge and interpretation of results!

Which Cluster?

Which clustering does k-means prefer?



k-means is trying to optimize the **heterogeneity** objective

$$\underset{z,\mu}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ z_i = j \} \left| \left| \mu_j - x_i \right| \right|_2^2$$

Coordinate Descent

k-means is trying to minimize the heterogeneity objective

$$\underset{z,\mu}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ z_i = j \} \left| \left| \mu_j - x_i \right| \right|_2^2$$

Step 0: Initialize cluster centers

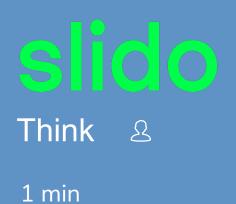
Repeat until convergence:

Step 1: Assign each example to its closest cluster centroid

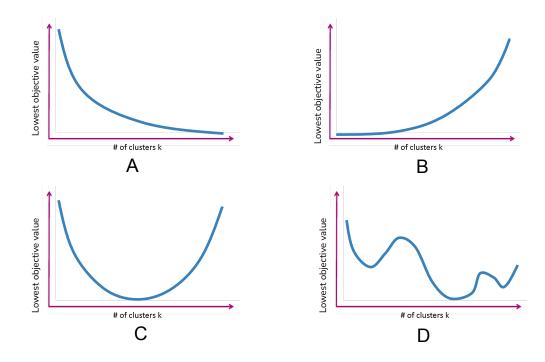
Step 2: Update the centroids to be the mean of all the points assigned to that cluster

Coordinate Descent alternates how it updates parameters to find minima. On each of iteration of Step 1 and Step 2, heterogeneity decreases or stays the same.

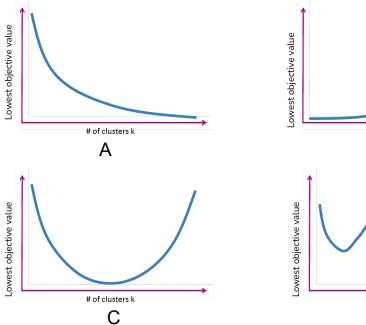
=> Will converge in finite time

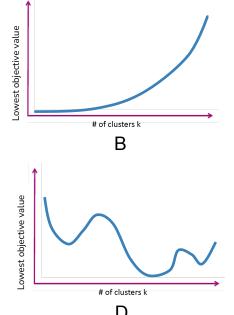


Consider training k-means to convergence for different values of k. Which of the following graphs shows how the heterogeneity objective will change based on the value of k?



Consider training k-means to convergence for different values of k. Which of the following graphs shows how the heterogeneity objective will change based on the value of k?

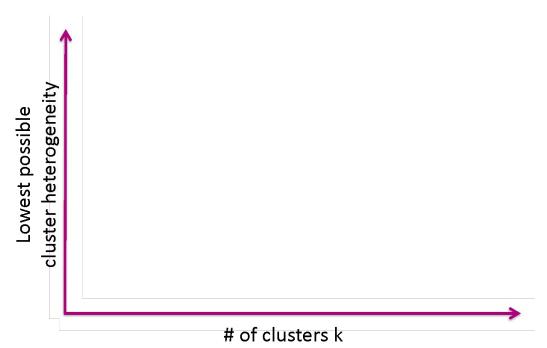




How to Choose k?

No right answer! Depends on your application.

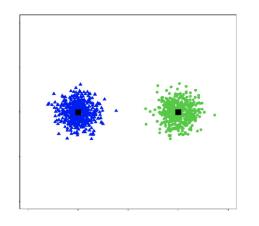
General, look for the "elbow" in the graph

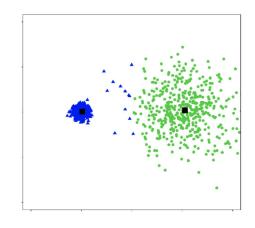


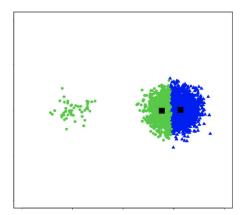
Note: You will usually have to run k-means multiple times for each k

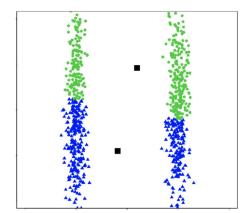
Cluster shape

 k-means works well for well-separated hyper-spherical clusters of the same size









Clustering vs Classification

- Clustering looks like we assigned labels (by coloring or numbering different groups) but we didn't use any labeled data.
- In clustering, the "labels" don't have meaning. To give meaning to the labels, human inputs is required
- Classification learns from minimizing the error between a prediction and an actual label.
- Clustering learns by minimizing the distance between points in a cluster.
- Classification quality metrics (accuracy / loss) do not apply to clustering (since there is no label).
- You can't use validation set / cross-validation to choose the best choice of k for clustering.

Recap

- Differences between classification and clustering
- What types of clusters can be formed by k-means
- K-means algorithm
- Convergence of k-means
- How to choose k
- Better initialization using k-means++

