CSE/STAT 416

Precision/Recall

k-Nearest Neighbors
Pre-Class Video

Tanmay Shah
Paul G. Allen School of Computer Science \& Engineering University of Washington

May 8, 2024

Pre-Lecture Video

Detecting Spam

Imagine I made a "Dummy Classifier" for detecting spam
The classifier ignores the input, and always predicts spam.
This actually results in 90% accuracy! Why?

- Most emails are spam...

This is called the majority class classifier.

A classifier as simple as the majority class classifier can have a high accuracy if there is a class imbalance.

A class imbalance is when one class appears much more frequently than another in the dataset

This might suggest that accuracy isn't enough to tell us if a model is a good model.

Assessing

 AccuracyAlways digging in and ask critical questions of your accuracy. Is there a class imbalance?

How does it compare to a baseline approach?

- Random guessing
- Majority class

Most important: What does my application need?

- What's good enough for user experience?
- What is the impact of a mistake we make?

Confusion
 Matrix

For binary classification, there are only two types of mistakes

$$
\begin{array}{ll}
\hat{y}=+1, & y=-1 \\
\hat{y}=-1, & y=+1
\end{array}
$$

Generally we make a confusion matrix to understand mistakes.
Predicted Label

Binary
 Classification Measures

Notation

$$
\begin{aligned}
& C_{T P}=\# \mathrm{TP}, \quad \mathrm{C}_{\mathrm{FP}}=\# \mathrm{FP}, \quad \mathrm{C}_{\mathrm{TN}}=\# \mathrm{TN}, \quad \mathrm{C}_{\mathrm{FN}}=\# \mathrm{FN} \\
& N=C_{T P}+C_{F P}+C_{T N}+C_{F N} \\
& N_{P}=C_{T P}+C_{F N}, \quad N_{N}=C_{F P}+C_{T N}
\end{aligned}
$$

Error Rate

$\frac{C_{F P}+C_{F N}}{N}$
Accuracy Rate
$\frac{C_{T P}+C_{T N}}{N}$
False Positive rate (FPR)
$\frac{C_{F P}}{N_{N}}$
False Negative Rate (FNR) $\frac{C_{F N}}{N_{P}}$

True Positive Rate or Recall
$\frac{T_{P}}{N_{P}}$
Precision

$$
\frac{T_{P}}{C_{T P}+C_{F P}}
$$

F1-Score

$$
2 \frac{\text { Precision } \cdot \text { Recall }}{\text { Precison }+ \text { Recall }}
$$

See more!

Change Threshold

What if I never want to make a false positive prediction?

What if I never want to make a false negative prediction?

One way to control for our application is to change the scoring threshold. (Could also change intercept!)

If $\operatorname{Score}(x)>\alpha$:

- Predict $\hat{y}=+1$

Else:
Predict $\hat{y}=-1$

ROC Curve \{ロ0 $\Delta\}$

IIII

4 5

What happens to our TPR and FPR as we increase the threshold?

8

Assessing Accuracy

Often with binary classification, we treat the positive label as being the more important of the two. We then often then focus on these metrics:

Precision: Of the ones I predicted positive, how many of them were actually positive?

Recall: Of all the things that are truly positive, how many of them did I correctly predict as positive?

Precision

What fraction of the examples I predicted positive were correct?
Sentences predicted to be positive:

Recall

Of the truly positive examples, how many were predicted positive?

$$
\begin{equation*}
\text { recall }=\frac{C_{T P}}{n r}=\frac{C_{T P}}{n} \tag{11}
\end{equation*}
$$

An optimistic model will predict almost everything as positive High recall, low precision

A pessimistic model will predict almost everything as negative
High precision, low recall

Finds few positive sentences, but includes no false positives

Finds all positive sentences, but includes many false positives

Controlling
 Precision/Recall

Depending on your application, precision or recall might be more important

Ideally you will have high values for both, but generally increasing recall will decrease precision and vice versa.

For logistic regression, we can control for how optimistic the model is by changing the threshold for positive classification

Before

$\hat{y}_{i}=+1$ if $\hat{P}\left(y=+1 \mid x_{i}\right)>0.5$ else $\hat{y}_{i}=-1$

Now

$\hat{y}_{i}=+1$ if $\hat{P}\left(y=+1 \mid x_{i}\right)>t$ else $\hat{y}_{i}=-1$

Can try every threshold to get a curve like below

Sometimes, Classifier B is strictly better than Classifier A

Most times, the classifiers are incomparable

Compare Classifiers

Often come up with a single number to describe it F1-score, AUC, etc.

Remember, what your application needs is most important

Also common to use precision at \mathbf{k}
If you show the top \mathbf{k} most likely positive examples, how many of them are true positives

CSE/STAT 416

Precision/Recall

k-Nearest Neighbors

Tanmay Shah
Paul G. Allen School of Computer Science \& Engineering University of Washington

May 8, 2024
? Questions? Raise hand or sli.do \#cs416
J. Listening to:

4. Document Retrieval -

"I like dogs "
Consider you had some time to read a book and wanted to find other books similar to that one.

Big Idea: Define an embedding and a similarity metric for the

Nearest Neighbors

The document in corpus that is most similar to x_{a}

It's very critical to properly define how we representeacte document x_{i} and the similarity metric distance! Different definitions will lead to very different results.

1-Nearest Neighbor

How long does it take to find the 1-NN? About n operations

k-Nearest Neighbors

Input

\downarrow

x_{q} : Query example (e.g. my book)
x_{1}, \ldots, x_{n} : Corpus of documents (e.g. Amazon books)

Output

Formally

Important Points

While the formalization of these algorithms can be a bit tedious, the intuition is fairly simple. Find the 1 or k nearest neighbors to a given document and return those as the answer.

This intuition relies on answering two important questions

How do we measure the distance distance $\left(x_{q}, x_{i}\right)$?

Pros

Very simple to describe
Very simple to compute

Cons

Common words like "the" and "a" dominate counts of uncommon words

Often it's the uncommon words that uniquely define a doc.

Words that appear in every document will have a small IDF making the TF-IDF small!

Distance

Euclidian

Distance

Now we will define what similarity/distance means

Want to define how "close" two vectors_are_A smaller value for distance means they are closer, a_large value for distance means they are farther away.

The simplest way to define distance between vectors is the Euclidean distance

Some features vary more than others or are measured in different units. We can weight different dimensions differently to make the distance metric more reasonable.

Weighted Euclidean distance
$\underline{\underline{\operatorname{distance}\left(x_{i}, x_{q}\right)}}=\sqrt{\sum_{j=1}^{D} a_{j}^{2}\left(x_{i}[j]-x_{q}[j]\right)^{2}}$

Cosine Similarity

To Normalize or
Not To Normalize?

Similarity $=13$
3110002001001000

Similarity $=52$
6200400202000

To Normalize or Not To Normalize?

Normalized

To Normalize or Not To Normalize?

Normalization is not desired when comparing documents of different sizes since it ignores length.

Not a real Poll Everywhere question, just time to work!
For the given documents, what are their Euclidean Distance and Cosine Similarity?

Assume we are using_ _ bag of words representation

Document 1: "I really like dogs"
Document 2: "dogs are really really awesome"

Yet another popular similarity measure for text documents.
Compare the overlap of words appearing in poth documents

The union of $A \& B$

Source: Uniqtech - Medium

Recap

Theme: Use nearest neighbors to recommend documents. Ideas:

Precision and Recall Curves
Implement a nearest neighbor algorithm
Compare and contrast different document representations

- Emphasize important words with TF-IDF

Compare and contrast different measurements of similarity

- Euclidean and weighted Euclidean
- Cosine similarity and inner-product similarity

