CSE/STAT 416

Convolutional Neural Networks Pre-Lecture Videos

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

May 3 , 2024

Video 1

Recap Neural Networks

Deep Learning

A lot of the buzz about ML recently has come from recent advancements in **deep learning**.

When people talk about "deep learning" they are generally talking about a class of models called **neural networks** that are a loose approximation of how our brains work.

2 mins

 Compute the output for input (0, 1). There is a sign activation function on the hidden layers and output layer.

NNs to the Rescue

Neural Networks implicitly find these low level features for us!

[Zeiler & Fergus '13]

Each layer learns more and more complex features

Hyperparameter Optimization

Video 2

Convolutions

Image Challenges

Images are extremely high dimensional

- CIFAR-10 dataset are very small: 3@32x32
 - # inputs:

For moderate sized images: 3@200x200
 # inputs:

Images are structured, we should leverage this

Convolutional Neural Networks

Idea: Reduce the number of weights that need to be learned by looking at local neighborhoods of image.

Use the idea of a **convolution** to reduce the number of inputs by combing information about local pixels.

Use a **kernel** that slides across the image, computing the sum of the element-wise product between the kernel and the overlapping part of the image

Image

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

0	1	2
2	2	0
0	1	2

3,	3,	2_2	1	0
02	0_2	1_0	3	1
30	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	30	2_1	1_2	0
0	0_2	1_2	30	1
3	1,	2_1	2_2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	3	2_0	1_1	02
0	0	1_2	3_{2}	1_0
3	1	2_0	2_1	3_2
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0,	0,	1_2	3	1
32	1_2	2_0	2	3
2	0,	02	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0	0	1_1	32	1
3	1_{2}	2_{2}	2_0	3
2	0,	0,	2_{2}	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0	0	1_0	3,	1_{2}
3	1	2_{2}	2_2	30
2	0	0	2_1	2_2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0	0	1	3	1
3,	1_1	2_2	2	3
2_{2}	0_2	00	2	2
2_0	0,	0_2	0	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0	0	1	3	1
3	1,	2_1	2_2	3
2	0_2	0_2	2_0	2
2	0,	0,	02	1

12	12	17
10	17	19
9	6	14

3	3	2	1	0
0	0	1	3	1
3	1	2_0	2_1	32
2	0	0_2	2_2	2_0
2	0	0,	0,	1_2

12	12	17
10	17	19
9	6	14

Special Kernels

The numbers in the kernels determine special properties

Convolutional Neural Networks (CNNs) learn the right weights for each kernel they use! Generally not interpretable! Hyperparameters of a Single Convolution

You can specify a few more things about a kernel

- Kernel dimensions
- Padding size and padding values
- Stride (how far to jump) values

For example, a 3x3 kernel applied to a 5x5 image with 1x1 zero padding and a 2x2 stride

CSE/STAT 416

Convolutional Neural Networks

Tanmay Shah Paul G. Allen School of Computer Science & Engineering University of Washington

May 3 , 2024

HW4 Walkthrough

- Nobody

- Google Colab:

Deep Learning

A lot of the buzz about ML recently has come from recent advancements in **deep learning**.

When people talk about "deep learning" they are generally talking about a class of models called **neural networks** that are a loose approximation of how our brains work.

Image Features

Features in computer vision are local detectors

Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)

The Past

A popular approach to computer vision was to make hand-crafted features for object detection

Input Extract features Use simple classifier e.g., logistic regression, SVMs Face?

Relies on coming up with these features by hand (yuck!)

NNs to the Rescue

Neural Networks implicitly find these low level features for us!

[Zeiler & Fergus '13]

Each layer learns more and more complex features

Convolutional Neural Networks

Idea: Reduce the number of weights that need to be learned by looking at local neighborhoods of image.

Use the idea of a **convolution** to reduce the number of inputs by combing information about local pixels.

Hyperparameters of a Single Convolution

You can specify a few more things about a kernel

- Kernel dimensions
- Padding size and padding values
- Stride (how far to jump) values

For example, a 3x3 kernel applied to a 5x5 image with 1x1 zero padding and a 2x2 stride

Convolutional Neural Networks

Another core operation that is similar to a convolution is a **pool**.

- Idea is to down sample an image using some operation
- Combine local pixels using some operation (e.g. max, min, average, median, etc.)

Typical to use **max pool** with 2x2 filter and stride 2

Tends to work better than average pool

 $\bigcap_{}$

Convolutional Neural Network

Combine convolutions and pools into pre-processing layers on image to learn a smaller, information dense representation.

Example architecture for hand-written digit recognition

- Each convolution section uses many different kernels (increasing depth of channels)
- Pooling layers downsample each channel separately
- Usually ends with fully connected neural network

Convolutional Neural Network

Why does this help?

- Only need to learn a small number of values (kernel weights) that get applied to the entire image region by region
 - This is called weight-sharing
 - Gives efficiency + shift invariance
- Pooling lets us focus on features from larger and larger regions of the original image.

- Input: 10x10x1 image (grayscale image of 10x10 pixels)
- Convolution: 5x5 kernel, stride 1
- MaxPool: 2x2, stride 2
- What is the size of the resulting image?

- Input: 10x10x1 image (grayscale image of 10x10 pixels)
- Convolution: 5x5 kernel, stride 1
- MaxPool: 2x2, stride 2
- What is the size of the resulting image?

Number of Weights / Parameters

CNN with Color Images

How does this work if there is more than one input channel?

Usually, use a <u>3-dimensional tensor</u> as the kernel to combine information from each input channel

CNN with Color Images

If there are 5 output channels in a conv layer, only need to learn the weights for the 5 neurons

 These neurons are a bit different since they look at the pixels that overlap with the window at each position.

2 min

Consider a plain neural network below, how many weights need to be learned?

Completely ignore intercept terms

CNN Applications & Transfer Learning

General CNN Architecture

CNNs usually* have architectures that look like the following

- A series of Convolution + Activation Functions and Pooling layers. It's very common to do a pool after each convolution.
- Each set of operations lowers the size of the image but increases the number of features.
- Then after some number of these operations, flatten the image to work with the final neural network

Features

The learned kernels are exactly the "features" for computer vision! They start simple (corners, edges) and get more complex after more layers

[Zeiler & Fergus '13]

CNNs have had remarkable success in practice

LeNet made 82 errors on MNIST (popular hand-written digit dataset of size 60K). 99.86% accuracy

49

ImageNet 2012 competition:

- 1.2M training images
- 1000 categories

Winner: SuperVision

- 8 layers, 60M parameters
 [Krizhevsky et al. '12]
- Top-5 Error: 17%

Huge CNN depth has proven helpful in recognition systems... Maybe because images contain hierarchical structure (faces contain eyes contain edges, etc.)

Applications

Image Classification

Scene Parsing [Farabet et al. '13]

Applications

Object Detection [Redmon et al. 2015] (http://pjreddie.com/yolo/)

Product Recommendation

3 min

For each of the Computer Vision Tasks below, what do you think the output layer of the neural network would look like? What would each output neuron represent?

- Image Classification: Given an image with a single object, output the class of the object.
- Object Localization: Given an image with a single object, output the class and bounding box (x,y,w,h) of the object.
- Object Detection: Given an image with possibly multiple objects, output the bounding box and class for <u>each</u> object.

Image Classification: Given an image with a single object, output the class of the object.

Output Layer

C neurong where C># classes

Each neuron represents probability lust the image is of that class **Object Localization**: Given an image with a single object, output the class **and** bounding box (x,y,w,h) of the object.

Output Layer

C+4 neurons

- First C are some +5 last
- Also need outputs.
 for boundry box
 (x,y,w,h)

Object Detection: Given an image with possibly multiple objects, output the bounding box **and** class for <u>**each**</u> object.

> Nore complex. Search Youtube Por YOLO algorithm explained!

A Tale of 2 Tasks

CNNs

What is learned in a neural network?

Initial layers are low-level and very general.

Usually not sensitive/specific to the task at hand

57

Transfer Learning

Transfer Learning

If done successfully, transfer learning can really help. Can give you

- A higher start
- A higher **slope**
- A higher **asymptote**

Deep Learning in Practice

Pros

No need to manually engineer features, enable automated learning of features

Impressive performance gains

- Image processing
- Natural Language Processing
- Speech recognition

Making huge impacts in most fields

Cons

Computationally really expensive

Environmentally, extremely expensive (Green AI)

Hard to tune hyper-parameters

- Choice of architecture (we've added even more hyperparameters)
 - Size of kernels, stride, 0 padding, number of conv layers, depth of outputs of conv layers,
- Learning algorithm

Still not very interpretable

NN Failures

While NNs have had amazing success, they also have some baffling failures.

"panda" 57.7% confidence

"No one adds noise to things in real applications"

Not true!

- Hackers will hack
- Sensors (cameras) are noisy!

NN Failures

 They even fail with "natural" transformations of images [Azulay, Weiss <u>https://arxiv.org/abs/1805.12177</u>]

64

Objects can be created to trick neural networks!

NN Failures

Dataset Bias

permutations of data to avoid bias.

Demo: Adversarial Neural Networks to Promote Fairness

https://godatadriven.com/blog/towards-fairness-in-ml-withadversarial-networks/

Dataset: Adult UCI

- Predict whether a person's income will be > \$50K or ≤ \$50K based on factors like:
 - Age
 - Education level
 - Marital status
 - Served in Armed Services?
 - Hours per week worked
 - Occupation sector
 - Etc.

Further Readings on Deep Learning

Dealing with Variable Length Sequences (e.g. language)

- Recurrent Neural Networks (RNNs)
- Long Short Term Memory Nets (LSTMs)
- <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Reinforcement Learning

Google DeepMind AlphaGo Zero

Generative Adversarial Networks

How to learn synthetic data

Green Al

Recap

Theme: Details of convolutional neural networks Ideas:

- Convolutions
- MaxPool
- Number of Parameters in a (C)NN
- Weight Sharing
- CNN Applications
- Transfer Learning
- NN Failures
- Using NNs to promote algorithmic fairness