CSE/STAT 416

Ensemble Methods

Hunter Schafer
Paul G. Allen School of Computer Science & Engineering
University of Washington

April 26, 2021

Decision
Trees Recap

Video 1

Housing Prices - Regression
Regression Model
Assessing Performance
Ridge Regression
LASSO

Sentiment Analysis — Classification
Classification Overview
Logistic Regression
Naive Bayes
Decision Trees
Ensemble Methods

ML Pipeline

Pre-
Processing

Optimization
algorithm

Decision
Trees

excellent

Branch/Internal node: splits into possible values of a feature

Leaf node: final decision (the class value)

Best
threshold?

Similar to our simple, threshold model when discussing Fairness!

Infinite possible

values of ¢t \

Income = t*

Income < t* Income > t* 0

Income

- Wn
Q
—h
®

$10K

Root
Predicting 18 12
probabilities

Loan status:
Safe RISky A
Credit?

excellen
t

fair
6 9
T2 !

poor

P(y = Safe | x)
= 3

10 7/H

Probabilities
(Depth 1)

+1|x)

P(y

13 1] . 11
—1) = — P(y; = +1) = 15
y values Root
-+ 18 13
x[1] < -0.07 x[1] >=-0.07

13 3 4 11

_—
X
—
+
>
S
o
0.0
y values Root
_ o+ 18 13
x[1] < -0.07 x[1] >=-0.07
13 3 4 11
x[1] < -1.66 x[1] >=-1.66 x[2] < 1.55 x[2] >= 1.55
7 0 6 3 1 11 3 0

Decision Tree

Com pare Depth 1 Depth 10
Decision
Boundaries

-1 -1
=2 =2

3554 -3 =2 -1 0 5S4 =3 =2 -1 IS4 =3 =2 -1 0

Logistic Regression
Degree 1 features

-4 -3 -2 -1 0 1 2 3 _3—5 -4 -3 -2 -1 0 1 2 3 _3—5 -4 -3 -2 -1 0 1 2 3

x[1] x[1] x[1]

Overfitting

Deep decision trees are prone to overfitting
Decision boundaries are interpretable but not stable
Small change in the dataset leads to big difference in
the outcome

Overcoming Overfitting:
Early stopping
Fixed length depth
Stop if error does not considerably decrease
Pruning
Grow full length trees
Prune nodes to balance a complexity penalty

Ea rly Stopping Rules:

Stopping

1) All data in the subset have the same label
2) No more features left to split

Early Stopping Rule
Only grow up to a max depth hyperparameter (choose
via validation)
Don’t split if there is not a sufficient decrease in error

Require a minimum number of examples in a leaf
node

Will use this on HW

Decision Tree
Overview

Super Simple: Interpretable model that is understandable by
people without too much ML experience.

Very Efficient: It actually isn’t too hard to train a tree

Depth Matters
Too small, it is too weak to learn the function (high bias)
Too tall, it is likely to overfit to the data (high variance)
Even by choosing depth appropriately, trees tend to not
be the best performing models

Random
Forests

Video 2

14

ML Pipeline

Pre-
Processing

Optimization
algorithm

Ensemble
Method

Instead of switching to a brand new type of model that is more
powerful than trees, what if we instead tried to make the tree into
a more powerful model.

What if we could combine many weaker models in such a way to
make a more powerful model?

A model ensemble is a collection of (generally weak) models that
are combined in such a way to create a more powerful model.

There are two common ways this is done with trees
Random Forest (Bagging)
AdaBoost (Boosting)

Ove rVieW A Random Forest is a collection of T Decision Trees. Each

decision tree casts a “vote” for a prediction and the ensemble
predicts the majority vote of all of its trees.

Instance

Random Forest \
\
Y
Tree 1

Tree 2 Tree -n

Class X Class Y Class X

’ || Majority Voting

Bredict Class—X

Training
Trees

If | just have one dataset, how could | learn more than one tree?

Solve this with bootstrapping! Can create many similar datasets
by randomly sampling with replacement.

74\
dum, P8
Obs | X Y
N
N TR
A"w(3 [53 |28

Obs

5.3

2.8

4.3

2.4

5.3

2.8

2.1

1.1

5.3

2.8

2.4

4.3

Obs

X

Y

2.1

1.1

2.1

1.1

4.3

2.4

A

& Technically, you also randomly select features too! (m < D)

The Random Forest model is a specific type of ensemble model
that uses bagging (bootstrapped aggregation).

When training the trees on the bootstrapped samples, we
actually want to use very deep trees that overfit!

That sounds bad at first, but we are trying to take advantage
of what it means to have a high variance model (low bias).

Remember that high variance models have low bias because

if you “average out” over all the models you could learn, they
will not have bias.

That is exactly what we are doing here! If we average over a
bunch of high variance (overfit) models, to get an ensemble
that has low bias and lower variance (if we add more trees)!

Random Training

Forest Make T random samples of the training data that are the
same size as the training data but are sampled with

Algorlthm replacement

Train a really tall tree on each sampled dataset (overfit)

Predict
For a given example, ask each tree to predict what it thinks
the label should be

Take a majority vote over all trees

Application

Microsoft used Random Forests in their Kinect system to identify
the “pose” of a person from the depth camera.

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

Abstract

We propose a new method to quickly and accurately pre-
dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Qur evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

. . w?
‘. ‘ front . | o

frong . °° ' e

%

depthimage == bodyparts =% 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

E Y L U » LI R . B U PE

Random
Forest
Overview

Use overfitting to our advantage! Averaging overfit models
can help make a strong model.

Versatile: Works pretty well in a lot of cases and can serve
many different purposes.
Classification, regression, clustering, feature importance

Low Maintenance: Tends to require less hyper-parameter
tuning. Good “out of the box” model.
More trees is always better here (but takes longer).
Some other hyperparameters, but they tend to have a
small affect on performance.

Efficient: Trees can be learned in parallel!

CSE/STAT 416

Ensemble Methods

Hunter Schafer
Paul G. Allen School of Computer Science & Engineering

University of Washington
April 26,2021

? Questions? Raise hand or sli.do #cs416
Jd Listening to: Beach Bunny

Types of
Features

Numeric: data described by a number (quantitative)
- Discrete: cannot be subdivided
- e.g., number of bedrooms
- Continuous: can be subdivided
- e.g., area of the house
- Tricky Case: house price? (don't divide further than penny)
- Rule of Thumb: if the discreteness is caused by units of
measurement, as opposed to the quantity being measured,
treat it as continuous!

Categorical: data described by a category (qualitative)
- Ordinal: has an order
e.g., school quality (good / okay / poor)
e.d., survey response (agree / neutral / disagree)
- Nominal: doesn’t have an order
- e.g., nearest school type (public/ private / charter)

Data All ML models we've learnt so far require input features to be

Encodings

numbers!
Ordinal: Assign each value to a number:
e.d., good = 1, okay = 0, poor = -1

Nominal: One-hot encoding, make each value its own binary

feature!
In section, you saw a one-hot encoding of “County”

School | House School - | School - | School - House
Price Public Private Charter Price
Public | S500K 1 0 S500K

Charter | $600K 0 S600K

0

Private | $750K - 0 1 0 S$750K
0 1
0

Public | $700K 1 0 $700K

Decision
Trees

excellent poor

Branch/Internal node: splits into possible values of a feature

Leaf node: final decision (the class value)

® Pros:

PrOS/ConS - Easy to interpret
. - Handles numeric and categorical variables without preprocessing®
DeC|S|0n Tree - In theory, scikit-learn still requires preprocessing

No normalization required as it uses rule-based approach
Can create non-linear decision boundaries
Can readily do multi-class classification (unlike Logistic Regression)

® Cons:
- Deep decision trees are prone to overfitting
- Only allows axis-parallel decision boundaries

—
.

1.0
1
»

0.0
|
L %
.
. " . L4
°* e . .
NTRROA B
«* .
st w

-0.5
L

-1.0

If | just have one dataset, how could | learn more than one tree?
Training

TreeS Solve this with bootstrap sampling! Can create many similar
datasets by randomly sampling with replacement.

Obs | X Y
3 53 |28
1 43 |24

3 53 |28
Obs | X v Obs | X Y
SR P Few : |2 I\
2 2.1 |11 . .
53 |28 1 .4.3 24
T
Original Data :
Obs | X Y

_—
21 |11
21 |11
43 |24

4. Technically, you also randomly select features too!

Practical
Details

Important that you are also randomly sampling features for
each tree too! Yet another hyperparameter.
Author recommends first guesses:

Classification: /D, Regression: D /3

Added Benefit: Out Of Bag (OOB) Error
Can estimate future performance on training data!
For each training point, only ask for predictions from
trees that did not train on that point.
Still a good general idea to have a test set anyways, but
is an added benefit if you have a small amount of data.

Think &

1 min

sli.do #cs416

error

error

Which of the following graphs do you think shows the training/true
error curves for random forests as you increase # trees (general trend)?

true

trees

true

-, train

~
~~~’

# trees

error

error

true

-~ .
S=<o, train

# trees

true

# trees



sli.do #cs416

error

error

V\Lu“,eacb\ vee Wsk Vmc'aw(,/low bing .

(

Which of the following graphs do you think shows the training/true

error curves for random forests as you increase # trees (general trend)?

true

# trees

true

-, train

~
~~~’

trees

error

error

ewor 4o doun &/ Yies

true
\~~~
-~
SS~<oo train
trees
x true
—————___
Rl train
e
trees

AdaBoost

Boosting

32

BaCkg round A weak learner is a model that only does slightly better than
random guessing.

Kearns and Valiant (1988, 1989):

“Can a set of weak learners create a single strong learner?”

Schapire (1990)

“Yes!"

Ada BOOSt AdaBoost is a model similar to Random Forest (an ensemble of
Overview

decision trees) with three notable differences that impact how we
train it quite severely.

Instead of using high depth trees that will overfit, we limit
ourselves to decision stumps.

Instead of doing majority voting, each model in the ensemble
gets a weight and we take a weighted majority vote
) m.‘J\ﬂ- 2
T ¢
R /\ Swmp
Y =F(x) = sign z We fr (x)
t=1)
X ;0’\ *‘um
L_) decsion shump £

Instead of doing random sampling with replacement, we use
the whole dataset and assign each datapoint a weight, where
high-weight datapoints were frequently misclassified by earlier
models in the ensemble.

Group &p&

2 min
slido #cs416

Recall the prediction rule for
weighted majority vote.

What label will AdaBoost
predict with these trees and
weiahts?

Weight Value

fitx) = +1

ws —1
) W3 1.5
fo(x) =-1 W, 0

ﬁ(x): 51'?'\ (S‘I. ‘:\/&ﬂ)

) :shlv\(l-l t(-0)-(-D +
f3(x) = -1 1§ (-D+0-(-))

= Sigvt(lo 5)

falx) = +1

3 Years 5 Years

Training With AdaBoost, training is going to look very different.

AdaBoost

We train each model in succession, where we use the errors of
the previous model to affect how we learn the next one.

To do this, we will need to keep track of two types of weights

® The first are the w; that we will use as the end result to
weight each model.
- Intuition: An accurate model within the ensemble
should have a high weight

® We will also introduce a weight «a; for each example in the
dataset that we update each time we train a new model
- Intuition: We want to put more weight on examples
that seem hard to classify correctly

Boosting
(AdaBoost)
vs. Bagging
(Random
Forrest)

Roandom Fores)

Adu Boost

Single Classifier

Bagging

Boosting

i} oo

Single Iteration

¥ar
Xy

Xy

Parallel

Sequential

AdaBoost
Ada Glance

hywpanw
Train J
fortin|1,2,..,T]:
- Learn f,(x) based on data weights a; ¢
- Compute model weight w;
- Compute data weights a; ¢4

ned M a;)of \"‘7 Vo l'en

3
T

9= F(x) = sign|) @efu(x)
t=1

Predict Wei

Welg hted Start with a dataset and train our first model (a decision stump)

Data “i For all the things it gets wrong, increase the weight of that
example. For each one that'’s right, decrease its weight.
= Covre F --= Incorvectr
Credit I Credit Income y Weight o
redal ncome y
A $130K Safe 0.5
A $130K /
B $80K ;:j:y B $80K Risky 159"
c $110K 'R,'s,g C $lI0K Risky 12 4+
PR T, A $110K Safe 08)y
A $90K Ea}.e A $90K Safe 06,
B $120K Safe > $100K <$100K B $120K Safe 07
c $30K Risky 3 1 e C $30K Risky 34
c $60K Risky C $60K Risky 2 4
B $05K Safe B $95K safe 08
A $60K ‘S;;e A $60K Safe 0.7 _l'_
A $98K Safe A $98K Safe 0.9 L

Learni ng W/ Before, when we learned decision trees we found the split that

Welg hted minimized classification error.
Data

Now, we want to minimize weighted classification error

ey @ I{fe () # i}
n
i=1 al,t

WeightedError(f;) =

Cless:Fication Error = i mishukes

& exawmples
T kol weiut oFf mshekeS
Weihles Bmwor = g L1l weigne of all eramples

If an example x, has weight a, = 3, this means getting that
example wrong is the same as getting 3 examples wrong!

V6.

This will most likely change which split is optimal!

We also set leaf node predictions to be the class with larger
total weight, not the class with more instances.

Learning w/

Weighted Loan status: Root
Safe Risk 6 3
Data Y
Credit A
excellent) Credit”
fair . \|/
fair
poor - excellent fair poor
excellent . 2 O 3 ’ 1 1 2
fair ‘:’ "’ j, ‘f’ v A
poor : 214 2 2.4 30 2))4

J
08

oor . We'ined :'D
F:‘air . © ‘ m
Uneriok. (25D & >

Consider the following weighted dataset, what is the weighted
classification error of the optimal decision stump (just one
split)?

We want to use the TumorSize and IsSmoker to predict if a
patient’s tumor is malignant.

TumorSize IsSmoker Malignant Weight

Small No No 0.5
Small Yes Yes 1.2
Large No No 0.3
Large Yes Yes 0.5
sli.do #cs416 Small Yes No 3.3

sli.do #cs416

TumorSize IsSmoker Malignant
Small No No 0.5
Small Yes Yes 1.2
Large No No 0.3
Large Yes Yes 0.5
Small Yes No 3.3
Tuwor Site Is Smoler
)aq./ gomll Ys e
[y, ND Y, v CY, V) LY,p)
0$, 03 1.4, 38 .1 3% o O3
Oresr Y Pred:r N Predcc+N Pred N
Weqnied 0.3 + l.z.:o.u Wegnies 1.7 + O x 024
Ewvor . 5.€ Ervor S-8

£

Real Valued
Features

The algorithm is more or less the same, but now we need to
account for weights

Risky Safe

\ A
[| \

Annual Income

® i ® i 1 d i i i i
$10.000 1412 i1 2|5i1{1000f 3 | 2 | 1%$200000
: : : ~ : '
L best weighel
Yesr- wrwei (Wed aveskold
uvegnold

\
Clesg Ccation Y 15 ¢

N i S { T —
\./e:‘sw&eé, ev: g Ve 1\““ e 10(8

55

€) Brain Break

AdaBoost Train

Ada Glance fortin[1,2,..,T]:

- Learn f,(x) based on data weights a; /
- Compute model weight w, ?

- Compute data weights a; ¢4 2

Predict

Model ue:‘(‘m-! -0 < J <oo

Goal: Want to have high weight for models that are very
M Odel. accurate, and low weight for models that are not.

Welights w;

The specific formula used for AdaBoost

1 (1 — WeightedError(ft))

Wt = _ln . A
2 WeightedError(f;)

Great classifier (WeightedError(f;) = 0.01)

~ 1 1-0.01 1
W, =-In(=2=) = 2In(99) = 2.3

Meh classifier (WeightedError(f;) = 0.5)

~ 1 1-0.5 1
W, = Eln(oo) = Eln(l) =0

Awful classifier (WeightedError(f;) = 0.99)
w, = ‘In (1_0'99) —ZIn (9—19) =-2.3

2 0.99 2

Com pUtI ng Goal: Increase the weights of data examples that were hard to
classify. If we got it wrong, increase the weight, otherwise

decrease it. ot W/ 0ld doanveipt ditagoiny & WP
wewWr, / corve(Hy clsted by
L stmp

agfe ™| if fo(x) = y;

a; elt, if f;(x;) # y;
P

dit+1

Ait+1 <

vpueiht dutpoint i
£ mi clasiFed by
Shump ¢

Model : z

1 1 — WeightedError

Wegnr = |, =-n 9 A(f)
WeightedError(f;)

AdaBoost Train

Ada Glance fortin[1,2,..,T]:
Qo - Learn f,(x) based on data weights a; ¢
\J"fﬁw - Compute model weight w;

\ - Compute data weights a; ¢4

a; e "t, if fr (x;) = y;

Ait+1 < ~ PN
a; e’t, if fi (x;) # y;

Predict

Normalizing

Generally, the weights for some points get really large/small in
magnitude due to how the data is laid out.

Numbers in wildly different scales can often cause problems due
to finite precision of computers when it comes to real numbers.

Generally, we normalize the data weights so they sum to 1 to
prevent them from getting too small or too big.

ai1+1

n

Ait+1 <

A
OL:,,V n @ R 11 (1 —WeightedError(ft)>
n

AdaBoost Train) WeightedError(f,)

Ada Glance fortin[1,2,..,T]:
Q® - Learn f:(x) based on data weights a; ¢
@ - Compute model weight w;

@ - Compute data weights a; ¢4

- - 3b
— . N
. " a;ce” "t if £ (x;) = y; A t41
it+1 > e P Ait+1 <
a; et if fr () # y; e =1 %1
Predict

Visualizing
AdaBoost

52

t =1

Start with all data having same weight. a; ; = 1/,

vli11

Calculate w; = 0.61

Lea N a Learn a decision stump that minimizes weighted error
Classifier With all the same weights, this is the same as before! .
Visuali1abon: Sie of poin+ ¢ coflaled w/ 00,4
Fr(o) = -
. Original data Learned decision stump f;(x)
————— 4
3t - - 3
2t = - - 2
E - + 4 -+'|’. » X 0
-1t - o 4+ + + -1
—27- - = + + -2
s a3 2 -1 0 1 2 3 543210 12

x[1]

1 Po‘ng mis class. ﬂ,‘ed

t=1
Update Data
Weights

x[2]

Compute new weights a; , based on the errors of fi

The points with more weight are drawn larger

Increase weight «; ,

of misclassified points

Learned decision stump f;(x) New data weights &2

Boundary

4
3
2
1
0
-1
-2

ey 25 =i 3 3 -1 0 1 2 3

x[1] x[1]

— 2 Now use new weights to learn best stump that minimizes

Learn a
Classifier

weighted classification error.

Fal) =
Calculate w, = 0.53

Then update weights based on errors.

Weighted data: using «; Learned decision stump f,(x)
. chosen in previous iteration . on weighted data

3t - — 3
ol - - — —-— 2
. - W — 1
2 o - 4 : e 0
-1} - =k +_+ + -1
=2} - - + + -2
-3 -3

-5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3

x[1] x[1]

Made Woe errors Wut leg weighled error®

AdaBoost
Ensemble

If we plot what the predictions would be for each point, we get
something that looks like this:

5

f,()

-4 -3 -2-10 1 2 3

—

3]
2
1
0|
1
2
3

"5

—

f2(%)

-4 -3 -2-10 1 2 3

—

5 (081 - (-1)# 053 (+1))
= Sqn (-0.03) = ~|

1.0

score

d“b n= yv‘

Say AdaBoost learned the below classifier attime t = 1.

Which of the following images represent the reweighted
points for time t = 27

] O g
" g° i p° . ®
. @
sli.do #cs416 B B m ° o
& S g 2 | E -

(A) () (C)

Say AdaBoost learned the below classifier at time t = 2.

.|
g @@.
@ @

Which of the following images represent the reweighted
points for time t = 37

O
" g° i p° u : = ®
. @
sli.do #cs416 B B m ° o
S 2 | -
J— . @

Say AdaBoost learned the below classifier at time t = 3.

0
I.@
® ® e
O :
®

Which of the following images represent the reweighted
points for time t = 47

] O g
" g° i p° . ®
. @
sli.do #cs416 B B m ° o
& S g 2 | E -

(A) (B) (C)

You have now worked through a complete example of training

AdaBoost AdaBoostl

Exam © le lteration 1 2 3

O
Classify s o ® R

L : :

Calculate
Weights ‘l,

|

Modify
Data

Uiy = V Ajz =+ Ajg =

Source: A Tutorial on Boosting (Freund and Schapire)

What about predicting?

Consider the following ensemble and weights from the
AdaBoost example we've been working through.

Think & g -

1 min sign |.42 + .65 +.92

8 A

Which of the following is the final decision boundary?

sli.do #cs416 . . a . " . “l. .
A (B) (C) (D)

Overlap Decision Bondec ik

Consider the following ensemble and Weigﬁts ffom the
AdaBoost example we've been working through.

~ \

sign |.42 + .65 +.92

8 A

Which of the following is the final decision boundary?

sli.do #cs416 . . - . . .

Iteration obina > 2 3
= [| [|
. LI [[| B g°
Classify |, |® o °) -
|| .
@ . ° [5] .
Calc.ulate @, = 042 5 = 065 2 = 092
Weights Az = s = @, =
I [| - m
) g C I | m ®
Modify c . ® . "
Data = @ O .
" O
- 0
. ® .
Source: A Tutorial on Boosting (Freund and Schapire)
sign |.42 +.65 92
[
_]
= m
]
[]

Source: A Tutorial on Boosting (Freund and Schapire)

T Mees

55

€) Brain Break

AdaBoost
Overfitting

65

1l (1 — WeightedError(ﬂ))
n

AdaBoost Train WeightedError(f,)

Ada Glance fortin[1,2,..,T]:

- Learn f,(x) based on data weights a; ¢
- Compute model weight w;

- Compute data weights a; ¢4

ai,te_Wt' lfft(xl) = Yi ai’t_l_l

A~ A a. P
W . i,t+! n
a;ce”t, if /i (x;) # i j=1%t+1

Ait+1 <

Predict

AdaBoost
when t = 30

Can eventually get O training error with a set of weak learners!

This is most likely overfit

_3—5—4—3—2—10 1 2 3

X[1]

training_error =0

Under some technical conditions...

AdaBoost
Theorem

May oscillate a bit

0.25 : :
But will

§ 0.20 generally decrease, &

- ; S 015 eventually become 0!
Training error o EO .

boosted classifier — 0 =

as T—eoo E 0.05}
0.00

10 2o—30 _
Iterations of boosting

o

20

Technical condition: The weak learner can do at least slightly
better than complete random guessing

Je dnt chase laded on des-

Decision Tree

Compare o 39% test error

035

S 0.30|
£0.25| o
8 Overfitting
EO.ZO—
EO.IS—
[
0.10|| == Training Error ¢ | .
ool | ™\ 8%trainingerror
] 2 4 6 8 10 12 14 16 18
Tree depth
4
ophmd|* depin
AdaBoost
0.36

== Training Error

035 — TestError ||
'é 0.34}]
E 0.33 \—_—’\——\
§ 032 32% test error

£ 031} 1)
£ 030} | Better fit & lower test error

0.29}] L
T 28.5% training error
0 2 4 6 8 10 12 14 16 18
.
Shwg

0.28

Boosting tends to be robust to overfitting

Ove rfitti n g? 036) |) — Training Error | |

=== Test Error

0.34
. 0.32|
S
5 0.30}
§0.28/
k-
S 0.26)
b=
20.24|
©
O 0.22}
0.20|
0.18

0 50 100 150 200
of trees

But will eventually overfit
ol ® qumber of tveed

0.40
=== Training Error
0.35 / = Test Error |l
'é 0.30
w
= 0.25
=
% 0.20
O
= 0.15
©
G 0.10
0.05
0'000

1000 2000 3000 4000 5000
of trees

Choose T? How do you end up choosing the number of trees T for boosting?

Like always
Find T that minimizes validation error

Do cross validation

You can’t
Find T that minimizes training error

Find T that minimizes test error

Application Boosting, AdaBoost and other variants like gradient boosting,
are some of the most successful models to date.

They are extremely useful in computer vision
The standard for face detection

Used by most winners of ML competitions (Kaggle, KDD Cup, ...)

Most industry ML systems use a model ensembles
Some with boosting, some with bagging
Many times just use 6 different types of models and
hand specify their weights.

AdaBoost
Overview

Powerful! One of the most powerful set of models for many
real world datasets.
Typically does better than random forest with the same
number of trees.

Higher Maintenance: You do have to tune hyper-parameters
AdaBoost: Number of trees is technically important, but
the model tends to be robust to overfitting in practice.
Gradient Boosting: MANY hyper-parameters (all
important)

Expensive: Boosting is inherently sequential which means its
slow to learn ensembles with many trees.
Can be made faster with optimized software like
XGBoost (UW)

Theme: Compare two different ways of making ensembles
Ideas:
Describe what an ensemble model is

Explain what a random forest is and why adding trees
improves accuracy.

Formalize how AdaBoost combines weighted votes from
simple classifiers (weak learners) and how those classifiers
are learned.

Compare/contrast bagging and boosting.

Describe the steps of the AdaBoost algorithm.

