
CSE/STAT 416
Ensemble Methods

Hunter Schafer
Paul G. Allen School of Computer Science & Engineering
University of Washington

April 26 , 2021

Decision
Trees Recap

Video 1

2

Roadmap
So Far

1. Housing Prices - Regression
- Regression Model
- Assessing Performance
- Ridge Regression
- LASSO

2. Sentiment Analysis – Classification
- Classification Overview
- Logistic Regression
- Naïve Bayes
- Decision Trees
- Ensemble Methods

3

4

ML Pipeline

4

Training
Data

Pre-
Processing

ML
model

Quality
metric

Optimization
algorithm

y

x ŷ

⌃f

Decision
Trees

• Branch/Internal node: splits into possible values of a feature

• Leaf node: final decision (the class value)

Start

Credit?

Safe

excellent

Income?

poor

Term?

Ris
ky

Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years

Best
threshold?

Similar to our simple, threshold model when discussing Fairness!

Infinite possible
values of 𝒕

Income < 𝑡∗ Income ≥ 𝑡∗

Safe
RiskyIncome

$120K$10K

Income = 𝑡∗

Predicting
probabilities

Root
18 12

excellen
t

9 2

fair
6 9

poor
3 1

Loan status:
Safe Risky

Credit?

Safe Risky

P(y = Safe | x)

= 3
=

0.75
3 + 1

Safe

Probabilities
(Depth 1)

Depth 2

Compare
Decision
Boundaries

10

Overfitting ▪ Deep decision trees are prone to overfitting
- Decision boundaries are interpretable but not stable
- Small change in the dataset leads to big difference in

the outcome

▪ Overcoming Overfitting:
- Early stopping

- Fixed length depth
- Stop if error does not considerably decrease

- Pruning
- Grow full length trees
- Prune nodes to balance a complexity penalty

Early
Stopping

▪ Stopping Rules:
- 1) All data in the subset have the same label
- 2) No more features left to split

▪ Early Stopping Rule
- Only grow up to a max depth hyperparameter (choose

via validation)
- Don’t split if there is not a sufficient decrease in error
- Require a minimum number of examples in a leaf

node
- Will use this on HW

12

Decision Tree
Overview

▪ Super Simple: Interpretable model that is understandable by
people without too much ML experience.

▪ Very Efficient: It actually isn’t too hard to train a tree

▪ Depth Matters
- Too small, it is too weak to learn the function (high bias)
- Too tall, it is likely to overfit to the data (high variance)
- Even by choosing depth appropriately, trees tend to not

be the best performing models

13

Random
Forests

Video 2

14

15

ML Pipeline

15

Training
Data

Pre-
Processing

ML
model

Quality
metric

Optimization
algorithm

y

x ŷ

⌃f

Ensemble
Method

Instead of switching to a brand new type of model that is more
powerful than trees, what if we instead tried to make the tree into
a more powerful model.

What if we could combine many weaker models in such a way to
make a more powerful model?

A model ensemble is a collection of (generally weak) models that
are combined in such a way to create a more powerful model.

There are two common ways this is done with trees

▪ Random Forest (Bagging)

▪ AdaBoost (Boosting)

16

Overview A Random Forest is a collection of 𝑇 Decision Trees. Each
decision tree casts a “vote” for a prediction and the ensemble
predicts the majority vote of all of its trees.

17

Training
Trees

If I just have one dataset, how could I learn more than one tree?

Solve this with bootstrapping! Can create many similar datasets
by randomly sampling with replacement.

Technically, you also randomly select features too! 18

Details The Random Forest model is a specific type of ensemble model
that uses bagging (bootstrapped aggregation).

When training the trees on the bootstrapped samples, we
actually want to use very deep trees that overfit!

▪ That sounds bad at first, but we are trying to take advantage
of what it means to have a high variance model (low bias).

▪ Remember that high variance models have low bias because
if you “average out” over all the models you could learn, they
will not have bias.

▪ That is exactly what we are doing here! If we average over a
bunch of high variance (overfit) models, to get an ensemble
that has low bias and lower variance (if we add more trees)!

19

Random
Forest
Algorithm

Training

▪ Make 𝑇 random samples of the training data that are the
same size as the training data but are sampled with
replacement

▪ Train a really tall tree on each sampled dataset (overfit)

Predict

▪ For a given example, ask each tree to predict what it thinks
the label should be

▪ Take a majority vote over all trees

20

Application Microsoft used Random Forests in their Kinect system to identify
the “pose” of a person from the depth camera.

21

Random
Forest
Overview

▪ Use overfitting to our advantage! Averaging overfit models
can help make a strong model.

▪ Versatile: Works pretty well in a lot of cases and can serve
many different purposes.

- Classification, regression, clustering, feature importance

▪ Low Maintenance: Tends to require less hyper-parameter
tuning. Good “out of the box” model.

- More trees is always better here (but takes longer).
- Some other hyperparameters, but they tend to have a

small affect on performance.

▪ Efficient: Trees can be learned in parallel!

22

CSE/STAT 416
Ensemble Methods

Hunter Schafer
Paul G. Allen School of Computer Science & Engineering
University of Washington

April 26 , 2021

❓ Questions? Raise hand or sli.do #cs416
🎵 Listening to: Beach Bunny

Types of
Features

▪ Numeric: data described by a number (quantitative)
- Discrete: cannot be subdivided

- e.g., number of bedrooms
- Continuous: can be subdivided

- e.g., area of the house
- Tricky Case: house price? (don’t divide further than penny)

- Rule of Thumb: if the discreteness is caused by units of
measurement, as opposed to the quantity being measured,
treat it as continuous!

▪ Categorical: data described by a category (qualitative)
- Ordinal: has an order

e.g., school quality (good / okay / poor)
e.g., survey response (agree / neutral / disagree)

- Nominal: doesn’t have an order
- e.g., nearest school type (public / private / charter)

Data
Encodings

▪ All ML models we’ve learnt so far require input features to be
numbers!

▪ Ordinal: Assign each value to a number:
- e.g., good = 1, okay = 0, poor = -1

▪ Nominal: One-hot encoding, make each value its own binary
feature!

- In section, you saw a one-hot encoding of “County”

25

School House
Price

Public $500K

Private $750K

Charter $600K

Public $700K

School -
Public

School -
Private

School -
Charter

House
Price

1 0 0 $500K

0 1 0 $750K

0 0 1 $600K

1 0 0 $700K

Decision
Trees

• Branch/Internal node: splits into possible values of a feature

• Leaf node: final decision (the class value)

Start

Credit?

Safe

excellent

Income?

poor

Term?

Risky Safe

fair

5 years3 years

Risky

Low

Term?

Risky Safe

high

5 years3 years

Pros/Cons
Decision Tree

▪ Pros:
- Easy to interpret
- Handles numeric and categorical variables without preprocessing*

- In theory, scikit-learn still requires preprocessing
- No normalization required as it uses rule-based approach
- Can create non-linear decision boundaries
- Can readily do multi-class classification (unlike Logistic Regression)

▪ Cons:
- Deep decision trees are prone to overfitting
- Only allows axis-parallel decision boundaries

Training
Trees

If I just have one dataset, how could I learn more than one tree?

Solve this with bootstrap sampling! Can create many similar
datasets by randomly sampling with replacement.

Technically, you also randomly select features too! 28

Practical
Details

▪ Important that you are also randomly sampling features for
each tree too! Yet another hyperparameter.
Author recommends first guesses:

- Classification: 𝐷, Regression: 𝐷/3

▪ Added Benefit: Out Of Bag (OOB) Error
- Can estimate future performance on training data!
- For each training point, only ask for predictions from

trees that did not train on that point.
- Still a good general idea to have a test set anyways, but

is an added benefit if you have a small amount of data.

29

sli.do #cs416

Think

Which of the following graphs do you think shows the training/true
error curves for random forests as you increase # trees (general trend)?

30

1 min

trees

er
ro

r Sou

true

train

trees

er
ro

r Sou
true

train

trees

er
ro

r Sou

true

train

trees

er
ro

r true

train

Sou

sli.do #cs416

Group

Which of the following graphs do you think shows the training/true
error curves for random forests as you increase # trees (general trend)?

31

2 min

trees

er
ro

r Sou

true

train

trees

er
ro

r Sou
true

train

trees

er
ro

r Sou

true

train

trees

er
ro

r true

train

Sou

AdaBoost
Boosting

32

Background A weak learner is a model that only does slightly better than
random guessing.

Kearns and Valiant (1988, 1989):

“Can a set of weak learners create a single strong learner?”

Schapire (1990)

“Yes!”

33

AdaBoost
Overview

AdaBoost is a model similar to Random Forest (an ensemble of
decision trees) with three notable differences that impact how we
train it quite severely.

▪ Instead of using high depth trees that will overfit, we limit
ourselves to decision stumps.

▪ Instead of doing majority voting, each model in the ensemble
gets a weight and we take a weighted majority vote

ො𝑦 = 𝐹 𝑥 = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡 𝑥

▪ Instead of doing random sampling with replacement, we use
the whole dataset and assign each datapoint a weight, where
high-weight datapoints were frequently misclassified by earlier
models in the ensemble.

34

sli.do #cs416

Group

35

2 min
sli.do #cs416

Income
>= 1000

SAFE

Yes

RISKY

No

Credit
History?

SAFE

Good

RISKY

Bad

Savings
>= 100k

SAFE

3 Years

RISKY

5 Years

Market
Cond.

SAFE

Bad

RISKY

Good

መ𝑓2 𝑥 = −1

መ𝑓1 𝑥 = +1

መ𝑓3 𝑥 = −1

መ𝑓4 𝑥 = +1

Weight Value

ෝ𝑤1 2

ෝ𝑤2 −1

ෝ𝑤3 1.5

ෝ𝑤4 0

Recall the prediction rule for
weighted majority vote.

ො𝑦 = 𝐹 𝑥

= 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡 𝑥

What label will AdaBoost
predict with these trees and
weights?

Training
AdaBoost

With AdaBoost, training is going to look very different.

We train each model in succession, where we use the errors of
the previous model to affect how we learn the next one.

To do this, we will need to keep track of two types of weights

▪ The first are the ෝ𝑤𝑡 that we will use as the end result to
weight each model.

- Intuition: An accurate model within the ensemble
should have a high weight

▪ We will also introduce a weight 𝛼𝑖 for each example in the
dataset that we update each time we train a new model

- Intuition: We want to put more weight on examples
that seem hard to classify correctly

36

Boosting
(AdaBoost)
vs. Bagging
(Random
Forrest)

37

AdaBoost
Ada Glance

Train
for 𝑡 in 1, 2, … , 𝑇 :

- Learn መ𝑓𝑡 𝑥 based on data weights 𝛼𝑖,𝑡
- Compute model weight ෝ𝑤𝑡

- Compute data weights 𝛼𝑖,𝑡+1

Predict

ො𝑦 = 𝐹(𝑥) = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡(𝑥)

38

Weighted
Data 𝛼𝑖

Start with a dataset and train our first model (a decision stump)

For all the things it gets wrong, increase the weight of that
example. For each one that’s right, decrease its weight.

39

Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Credit Income y

A $130K Safe

B $80K Risky

C $110K Risky

A $110K Safe

A $90K Safe

B $120K Safe

C $30K Risky

C $60K Risky

B $95K Safe

A $60K Safe

A $98K Safe

Income?

> $100K ≤ $100K

ŷ = Safeŷ = Safe

3 1 4 3

Credit Income y Weight α

A $130K Safe 0.5

B $80K Risky 1.5

C $110K Risky 1.2

A $110K Safe 0.8

A $90K Safe 0.6

B $120K Safe 0.7

C $30K Risky 3

C $60K Risky 2

B $95K Safe 0.8

A $60K Safe 0.7

A $98K Safe 0.9

Learning w/
Weighted
Data

Before, when we learned decision trees we found the split that
minimized classification error.

Now, we want to minimize weighted classification error

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 𝑓𝑡 =
σ𝑖=1
𝑛 𝛼𝑖,𝑡𝕀{ መ𝑓𝑡 𝑥𝑖 ≠ 𝑦𝑖}

σ𝑖=1
𝑛 𝛼𝑖,𝑡

If an example 𝑥2 has weight 𝛼2 = 3, this means getting that
example wrong is the same as getting 3 examples wrong!

▪ This will most likely change which split is optimal!

40

Learning w/
Weighted
Data

We also set leaf node predictions to be the class with larger
total weight, not the class with more instances.

41

Root
6 3

Loan status:
Safe Risky

poor
1 2

fair
3 1

excellent
2 0

Credit?
Credit y weight

excellent safe 1.2

fair risky 3.0

fair safe 0.5

poor risky 0.9

excellent safe 0.9

fair safe 0.7

poor risky 1.0

poor safe 2.1

fair safe 1.2

sli.do #cs416

Group

Consider the following weighted dataset, what is the weighted
classification error of the optimal decision stump (just one
split)?

We want to use the TumorSize and IsSmoker to predict if a
patient’s tumor is malignant.

42

2 min
TumorSize IsSmoker Malignant Weight

Small No No 0.5

Small Yes Yes 1.2

Large No No 0.3

Large Yes Yes 0.5

Small Yes No 3.3

sli.do #cs416

Group

43

0 min

TumorSize IsSmoker Malignant Weight

Small No No 0.5

Small Yes Yes 1.2

Large No No 0.3

Large Yes Yes 0.5

Small Yes No 3.3

Real Valued
Features

The algorithm is more or less the same, but now we need to
account for weights

44

1 2 1 2 5 1 1000 123

Brain BreakBrain BreakBrain Break

45

AdaBoost
Ada Glance

Train
for 𝑡 in 1, 2, … , 𝑇 :

- Learn መ𝑓𝑡 𝑥 based on data weights 𝛼𝑖,𝑡
- Compute model weight ෝ𝑤𝑡

- Compute data weights 𝛼𝑖,𝑡+1

Predict

ො𝑦 = 𝐹(𝑥) = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡(𝑥)

46

Model
Weights ෝ𝑤𝑡

Goal: Want to have high weight for models that are very
accurate, and low weight for models that are not.

The specific formula used for AdaBoost

ෝ𝑤𝑡 =
1

2
ln

1 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟(መ𝑓𝑡)

▪ Great classifier (𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡 = 0.01)

- ෝ𝑤𝑡 =
1

2
ln

1−0.01

0.01
=

1

2
ln 99 = 2.3

▪ Meh classifier (𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡 = 0.5)

- ෝ𝑤𝑡 =
1

2
ln

1−0.5

0.5
=

1

2
ln 1 = 0

▪ Awful classifier (𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡 = 0.99)

- ෝ𝑤𝑡 =
1

2
ln

1−0.99

0.99
=

1

2
ln

1

99
= −2.3

47

Computing
𝛼𝑖,𝑡+1

Goal: Increase the weights of data examples that were hard to
classify. If we got it wrong, increase the weight, otherwise
decrease it.

𝛼𝑖,𝑡+1 ← ൝
𝛼𝑖,𝑡𝑒

−ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 = 𝑦𝑖

𝛼𝑖,𝑡𝑒
ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 ≠ 𝑦𝑖

48

AdaBoost
Ada Glance

Train
for 𝑡 in 1, 2, … , 𝑇 :

- Learn መ𝑓𝑡 𝑥 based on data weights 𝛼𝑖,𝑡
- Compute model weight ෝ𝑤𝑡

- Compute data weights 𝛼𝑖,𝑡+1

Predict

ො𝑦 = 𝐹(𝑥) = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡(𝑥)

49

ෝ𝑤𝑡 =
1

2
ln

1 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟(መ𝑓𝑡)

𝛼𝑖,𝑡+1 ← ൝
𝛼𝑖,𝑡𝑒

−ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 = 𝑦𝑖

𝛼𝑖,𝑡𝑒
ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 ≠ 𝑦𝑖

Normalizing
𝛼𝑖,𝑡

Generally, the weights for some points get really large/small in
magnitude due to how the data is laid out.

Numbers in wildly different scales can often cause problems due
to finite precision of computers when it comes to real numbers.

Generally, we normalize the data weights so they sum to 1 to
prevent them from getting too small or too big.

𝛼𝑖,𝑡+1 ←
𝛼𝑖,1+1

σ𝑗=1
𝑛 𝛼𝑗,𝑡+1

50

AdaBoost
Ada Glance

Train
for 𝑡 in 1, 2, … , 𝑇 :

- Learn መ𝑓𝑡 𝑥 based on data weights 𝛼𝑖,𝑡
- Compute model weight ෝ𝑤𝑡

- Compute data weights 𝛼𝑖,𝑡+1

Predict

ො𝑦 = 𝐹(𝑥) = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡(𝑥)

51

𝛼𝑖,𝑡+1 ← ൝
𝛼𝑖,𝑡𝑒

−ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 = 𝑦𝑖

𝛼𝑖,𝑡𝑒
ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 ≠ 𝑦𝑖

ෝ𝑤𝑡 =
1

2
ln

1 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟(መ𝑓𝑡)

𝛼𝑖,𝑡+1 ←
𝛼𝑖,𝑡+1

σ𝑗=1
𝑛 𝛼𝑗,𝑡+1

Visualizing
AdaBoost

52

𝑡 = 1
Learn a
Classifier

Start with all data having same weight. 𝛼𝑖,1 = Τ1 𝑛

Learn a decision stump that minimizes weighted error

▪ With all the same weights, this is the same as before!

መ𝑓1 𝑥 = ⋯

Calculate ෝ𝑤1 ≈ 0.61

53

Learned decision stump f1(x)Original data

𝑡 = 1
Update Data
Weights

Compute new weights 𝛼𝑖,2 based on the errors of መ𝑓1
The points with more weight are drawn larger

54

Learned decision stump f1(x) New data weights αi
Boundary

Increase weight αi
of misclassified points

𝛼𝑖,2

𝛼𝑖,2

𝑡 = 2
Learn a
Classifier

Now use new weights to learn best stump that minimizes
weighted classification error.

መ𝑓2 𝑥 = ⋯

Calculate ෝ𝑤2 ≈ 0.53

Then update weights based on errors.

55

Learned decision stump f2(x)

on weighted data

Weighted data: using αi
chosen in previous iteration

𝛼𝑖,2

AdaBoost
Ensemble

If we plot what the predictions would be for each point, we get
something that looks like this:

56

=

f1(x) f2(x)

0.61

ŵ1

+ 0.53

ŵ2

sli.do #cs416

Group

▪ Say AdaBoost learned the below classifier at time 𝑡 = 1.

▪ Which of the following images represent the reweighted
points for time 𝑡 = 2?

57

1 min

(A) (B) (C)

sli.do #cs416

Group

▪ Say AdaBoost learned the below classifier at time 𝑡 = 2.

▪ Which of the following images represent the reweighted
points for time 𝑡 = 3?

58

1 min

(A) (B) (C)

sli.do #cs416

Group

▪ Say AdaBoost learned the below classifier at time 𝑡 = 3.

▪ Which of the following images represent the reweighted
points for time 𝑡 = 4?

59

30 sec

(A) (B) (C)

AdaBoost
Example

You have now worked through a complete example of training
AdaBoost!

▪ What about predicting?
60

ෝ𝑤1 = 0.42
𝛼𝑖,2 = ⋯

ෝ𝑤2 = 0.65
𝛼𝑖,3 = ⋯

ෝ𝑤3 = 0.92
𝛼𝑖,4 = ⋯

sli.do #cs416

Think

▪ Consider the following ensemble and weights from the
AdaBoost example we’ve been working through.

▪ Which of the following is the final decision boundary?

61

1 min

(A) (B) (C) (D)

sli.do #cs416

Group

▪ Consider the following ensemble and weights from the
AdaBoost example we’ve been working through.

▪ Which of the following is the final decision boundary?

62

2 min

(A) (B) (C) (D)

ෝ𝑤1 = 0.42
𝛼𝑖,2 = ⋯

ෝ𝑤2 = 0.65
𝛼𝑖,3 = ⋯

ෝ𝑤3 = 0.92
𝛼𝑖,4 = ⋯

63

Brain BreakBrain BreakBrain Break

64

AdaBoost
Overfitting

65

AdaBoost
Ada Glance

Train
for 𝑡 in 1, 2, … , 𝑇 :

- Learn መ𝑓𝑡 𝑥 based on data weights 𝛼𝑖,𝑡
- Compute model weight ෝ𝑤𝑡

- Compute data weights 𝛼𝑖,𝑡+1

Predict

ො𝑦 = 𝐹(𝑥) = 𝑠𝑖𝑔𝑛

𝑡=1

𝑇

ෝ𝑤𝑡
መ𝑓𝑡(𝑥)

66

𝛼𝑖,𝑡+1 ← ൝
𝛼𝑖,𝑡𝑒

−ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 = 𝑦𝑖

𝛼𝑖,𝑡𝑒
ෝ𝑤𝑡 , if መ𝑓𝑡 𝑥𝑖 ≠ 𝑦𝑖

ෝ𝑤𝑡 =
1

2
ln

1 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟 መ𝑓𝑡

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟(መ𝑓𝑡)

𝛼𝑖,𝑡+! ←
𝛼𝑖,𝑡+1

σ𝑗=1
𝑛 𝛼𝑗,𝑡+1

AdaBoost
when 𝑡 = 30

Can eventually get 0 training error with a set of weak learners!

This is most likely overfit

67

training_error = 0

AdaBoost
Theorem

Technical condition: The weak learner can do at least slightly
better than complete random guessing

68

Under some technical conditions…

Training error of
boosted classifier → 0

as T→∞

T
ra

in
in

g
 e

rr
o

r

Iterations of boosting

May oscillate a bit

But will

generally decrease, &

eventually become 0!

Compare
Decision Tree

AdaBoost

69

39% test error

8% training error

Overfitting

Boosted decision stumps on loan data

32% test error

28.5% training error

Better fit & lower test error

Overfitting?
Boosting tends to be robust to overfitting

But will eventually overfit

70

Choose 𝑇? How do you end up choosing the number of trees 𝑇 for boosting?

Like always

▪ Find 𝑇 that minimizes validation error

▪ Do cross validation

You can’t

▪ Find 𝑇 that minimizes training error

▪ Find 𝑇 that minimizes test error

71

Application ▪ Boosting, AdaBoost and other variants like gradient boosting,
are some of the most successful models to date.

▪ They are extremely useful in computer vision
- The standard for face detection

▪ Used by most winners of ML competitions (Kaggle, KDD Cup, …)

▪ Most industry ML systems use a model ensembles
- Some with boosting, some with bagging
- Many times just use 6 different types of models and

hand specify their weights.

72

AdaBoost
Overview

▪ Powerful! One of the most powerful set of models for many
real world datasets.

- Typically does better than random forest with the same
number of trees.

▪ Higher Maintenance: You do have to tune hyper-parameters
- AdaBoost: Number of trees is technically important, but

the model tends to be robust to overfitting in practice.
- Gradient Boosting: MANY hyper-parameters (all

important)

▪ Expensive: Boosting is inherently sequential which means its
slow to learn ensembles with many trees.

- Can be made faster with optimized software like
XGBoost (UW)

73

Recap Theme: Compare two different ways of making ensembles

Ideas:

▪ Describe what an ensemble model is

▪ Explain what a random forest is and why adding trees
improves accuracy.

▪ Formalize how AdaBoost combines weighted votes from
simple classifiers (weak learners) and how those classifiers
are learned.

▪ Compare/contrast bagging and boosting.

▪ Describe the steps of the AdaBoost algorithm.

74

