CSE/STAT 416

Naïve Bayes and Decision Trees Pre-Class Videos

Hunter Schafer Paul G. Allen School of Computer Science & Engineering University of Washington

April 26, 2021

Probability Classifier

Idea: Estimate probabilities $\hat{P}(y|x)$ and use those for prediction

Probability Classifier

Input *x*: Sentence from review

- Estimate class probability $\hat{P}(y = +1|x)$
- If $\hat{P}(y = +1|x) > 0.5$: $\hat{y} = +1$
- Else:
 - $\hat{y} = -1$

Notes:

Estimating the probability improves interpretability

Interpreting Score

Naïve Bayes

Idea: Naïve Bayes

x = "The sushi & everything else was awesome!" P(y = +1 | x = "The sushi & everything else was awesome!")? P(y = -1 | x = "The sushi & everything else was awesome!")?

Idea: Select the class that is the most likely!

Bayes Rule:

$$P(y = +1|x) = \frac{P(x|y = +1)P(y = +1)}{P(x)}$$

Example

P("The sushi & everything else was a we some!" | y = +1) P(y = +1)

P("The sushi & everything else was awesome!")

Since we're just trying to find out which class has the greater probability, we can discard the divisor.

Naïve Assumption

Idea: Select the class with the highest probability!Problem: We have not seen the sentence before.Assumption: Words are independent from each other.

x = "The sushi & everything else was awesome!"

 $\frac{P("The sushi \& everything else was awesome!"|y = +1) P(y = +1)}{P("The sushi \& everything else was awesome!")}$

 $\begin{array}{l} P(``The sushi \& everything else was awesome!'' | y = +1) \\ = P(The | y=+1) * P(sushi | y = +1) * P(\& | y = +1) \\ * P(everything | y = +1) * P(else | y = +1) * P(was | y = +1) \\ * P(awesome | y = +1) \end{array}$

Compute Probabilities

How do we compute something like

P(y = +1)?

How do we compute something like

P(``awesome'' | y = +1)?

Zeros

If a feature is missing in a class everything becomes zero.

P("The sushi & everything else was awesome!" | y = +1)= P(The | y=+1) * P(sushi | y = +1) * P(& | y = +1) * P(everything | y = +1) * P(else | y = +1) * P(was | y = +1) * P(awesome | y = +1)

Solutions?

- Take the log (product becomes a sum).
 - Generally define log(0) = 0 in these contexts
- Laplacian Smoothing (adding a constant to avoid multiplying by zero)

Compare Models

Logistic Regression:

$$P(y = +1|x, w) = \frac{1}{1 + e^{-w^T h(x)}}$$

Naïve Bayes:

$$P(y|x_1, x_2, ..., x_d) = \prod_{j=1}^d P(x_j|y) P(y)$$

Compare Models

Generative: defines a model for generating x (e.g. Naïve Bayes) **Discriminative:** only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)

CSE/STAT 416

Naïve Bayes and Decision Trees

Hunter Schafer Paul G. Allen School of Computer Science & Engineering University of Washington

April 26, 2021

Questions? Raise hand or sli.do #cs416
 Before Class: Pro-rain or anti-rain person?
 Listening to: Alvvays

Compare Models

Logistic Regression:

$$P(y = +1|x, w) = \frac{1}{1 + e^{-w^T h(x)}}$$

Naïve Bayes:

$$P(y|x_1, x_2, ..., x_d) = \prod_{j=1}^d P(x_j|y) P(y)$$

- Based on counts of words/classes
 - Laplace Smoothing

Compare Models

Generative: defines a model for generating x (e.g. Naïve Bayes)

Discriminative: only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)

sli.do #cs416

2 min

$P(y=+1|x) \propto P(x|y=+1)P(y=+1)$

Recap: What is the predicted class for this sentence assuming we have the following training set (no Laplace Smoothing). Pred Positive "he is not cool" 2/3 P(y=+1) =

$$P("he is not "cool" | y=+1)$$

$$= P("he"(y=+1) P("is" | y=+1) P("not" | y=+1) P("cool" | y=+1)$$

$$= \frac{2}{11} \cdot \frac{3}{11} \cdot \frac{1}{11} = \frac{6}{114}$$

P

$$P(y_{z+1}|x) \propto \frac{6}{11^4} \cdot \frac{2}{3} = ... > 0$$

Sentence	Label	
this dog is cute	Positive	
he does not like dogs	Negative	
he is not bad he is cool	Positive	

$$P(y_{2} - 1 | x) \propto P(x | y_{2} - 1) P(y_{2} - 1)$$

= 0 · $\frac{1}{3}$
P("cod") (y_{2} - 1) = 0

Decision Trees

e CDC's <u>COVID-19 Testing</u> webpage for guidance on when to re-test. following the <u>UW Face Covering Policy</u> u

Parametric vs. Non-Parametric Methods

Parametric Methods: make assumptions about the data distribution

- Linear Regression \Rightarrow assume the data is linear
- Logistic Regression ⇒ assume probability has the shape of of a logistic curve and linear decision boundary
- Those assumptions result in a *parameterized* function family. Our learning task is to learn the parameters.

Non-Parametric Methods: (mostly) don't make assumptions about the data distribution

- Decision Trees, k-NN (soon)
- We're still learning something, but not the parameters to a function family that we're assuming describes the data.
- Useful when you don't want to (or can't) make assumptions about the data distribution.

XOR

What makes a loan risky?

I want to buy a new house!

Loan Application

Credit History ★★★★

Income ★★★

Term ★★★★★

Personal Info ★★★

Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair

Credit History $\star\star\star\star$ Income $\star\star\star$ Term **** Personal Info $\star\star\star$

Income

What's my income?

Example: \$80K per year

Credit History $\star\star\star\star$ Income $\star\star\star$ Term ***** Personal Info $\star\star\star$

Loan terms

How soon do I need to pay the loan?

Example: 3 years, 5 years,...

Personal information

Age, reason for the loan, marital status,...

Example: Home loan for a married couple

Credit History ★★★★ Income ★★★★ Term ★★★★★ Personal Info

 $\star\star\star$

Intelligent application

Classifier review

Setup

Data (N observations, 3 features)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Evaluation: classification error

Many possible decisions: number of trees grows exponentially!

I Poll Everywhere

Some

CONCERNS

Think 원

2 min

With our discussion of bias and fairness from last week, discuss the potential biases and fairness concerns that might be present in our dataset about loan safety.

Predictions affecting economy (2008 Financial crisis)
Biases in training duta ⇒ biased outcomes
Redining, access to high paying jetes, etc.
Legal constraints on which fortures to use to constraints on outputs (e.g., non-discrimination agoinst race)

Decision Trees

- Branch/Internal node: splits into possible values of a feature
- Leaf node: final decision (the class value)

Brain Break

Growing Trees

Visual Notation

 ∇

Decision stump: 1 level

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe
	∇	71	20

Making predictions

For each leaf node, set \hat{y} = majority value

How do we select the best feature?

• Select the split with lowest classification error

Choice 2: Split on Term

Calculate the node values.

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Choice 2: Split on Term

How do we select the best feature?

Select the split with lowest classification error

How do we measure effectiveness of a split?

Calculating classification error

Step 1: \hat{y} = class of majority of data in node Step 2: Calculate classification error of predicting \hat{y} for this data

Choice 1: Split on Credit history?

Split on Credit: Classification error

Choice 1: Split on Credit

Choice 2: Split on Term?

Evaluating the split on Term

Choice 1 vs Choice 2: Comparing split on credit vs term

Tree	Classification	
	error	
(root)	0.33	
split on credit	0.22	
split on loan term	0.33	

Choice 1: Split on Credit

Split Selection

Split(node)

- Given *M*, the subset of training data at a node
- For each (remaining) feature $h_j(x)$:
 - Split data *M* on feature $h_i(x)$
 - \circ Compute the classification error for the split

In Practice allow multiple splits per feature

• Chose feature $h_i^*(x)$ with the lowest classification error

Greedy & Recursive Algorithm

BuildTree(node)

- If termination criterion is met:
 - o Stop
- Else:

recursive!

- Split(node)
- For child in node:
 - BuildTree(child)

Decision stump: 1 level

Stopping

For now: Stop when all points are in one class

Tree learning = Recursive stump learning

Second level

following datapoints?	Root Root Root Root Root Reputation
Think & Safe Risky	Root 6 3 • Line as feeture value (i.e., missing is signed)
1 min	Credit? fair 3 1 1 2
Credit Term Income	Term?
excellent 5 yrs high 54 3 year	
excellent5 yrshigh5 fefair3 yrslow5 fepoor5 yrs(missing)? ??Safe	
poor 5 yrs (missing) ??? Safe	Risky Safe

	S Group		
	2 min		
	Credit	Term	Income
	excellent	5 yrs	high
V	fair	3 yrs	low
ť	poor	5 yrs	(missing)

 What predictions <u>should</u> the below decision tree output for the following datapoints?

Brain Break

Real valued features

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Threshold split

Best threshold?

Similar to our simple, threshold model when discussing Fairness!

Threshold between points

Same classification error for any threshold split between v_a and v_b

Only need to consider midpoints

Finite number of splits to consider

Income

\$10K

Safe

Risky

\$120K

Threshold split selection algorithm

- Step 1: Sort the values of a feature h_j(x):
 Let [v₁, v₂, ..., v_N] denote sorted values
- Step 2:
 - For i = [1, ..., N 1]
 - Consider split $t_i = \frac{v_i + v_{i+1}}{2}$
 - Compute classification error for threshold split $h_j(x) \ge t_i$
 - Chose the t^* with the lowest class. error

Visualizing the threshold split

Split on Age >= 38

Each split partitions the 2-D space 100 > 35 Income 345 K $\circ \nabla$

Depth 1: Split on x[1]

Depth 2

 ∇

Splitting on same feature twice is allowed!

Threshold split caveat

For threshold splits, same feature can be used multiple times

Decision boundaries

 Decision boundaries can be complex!

Overfitting

- Deep decision trees are prone to overfitting
 - Decision boundaries are interpretable but not stable
 - Small change in the dataset leads to big difference in the outcome
- Overcoming Overfitting:
 - Stop when tree reaches certain height (e.g., 4 levels)
 - Stop when leaf has \leq some num of points (e.g., 20 pts)
 - Will be the stopping condition for HW
 - Stop if split won't significantly decrease error by more than some amount (e.g., 10%)
- Other methods include growing full tree and pruning back
- Fine-tune hyperparameters with validation set or CV

In Practice

- Trees can be used for classification or regression (CART)
 - Classification: Predict majority class for root node
 - Regression: Predict average label for root node
- In practice, we don't minimize classification error but instead some more complex metric to measure quality of split such as Gini
 Impurity or Information Gain (not covered in 416)

Can also be used to predict probabilities

Predicting probabilities

Recap

What you can do now:

- Define the assumptions and modeling for Naïve Bayes
- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions

