
Chapter 6

Logistic Regression

6.1 MSE / Convexity

In previous chapters we have discussed how mean squared error (MSE) can be used to create machine
learning regression models which can perform quite well. However, in classification MSE is not possible
because the task is not convex, continuous or di↵erentiable. In addition, there is not a closed form solution,
like in regression. This means that algorithms like gradient descent won’t be able to find an optimal set of
weights for the discrete results.

Definition 6.1: Convexity

A function is considered convex if a line segment between any two points of the function does not
lie below the graph.

Figure 6.26: Convex (right) and non convex (left) functions.

Without a convex function, gradient descent might only be able to find a local minimum for the function or
be unable to find any minimum whatsoever. Imagine taking gradient descent on the left non convex function
shown in Figure 6.1. In this scenario, we would never reach a global minimum.

In classification with MSE, the three requirements of a convex, continuous and di↵erentiable function are not
met. The solutions are discrete values without any ordinal nature so we need to transform our problem into
something where we can measure how close a prediction is to some category, rather than directly outputting
that category from our model. One way we can do this is by measuring error using probabilities. Probabilities
are continuous and can help measure the level of certainty we might have for a prediction.

Example(s)

For example, let us imagine we are creating a model to predict the sentiment of a restaurant review
where a positive review maps to +1 and a negative review maps to -1. Ideally the trained model
would be able to predict a review like “The sushi everything else were awesome!” positively.

P (y = +1 | x) = “The sushi and everything else were awesome!”) = 0.99

Then, using probabilities for reviews that have a higher degree of uncertainty regarding the sentiment,
our model could recognize that.

P (y = �1 | x) = “The sushi was alright and service was okay.”) = 0.50
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With probabilities the certainty of an event is now known but the results must be mapped back to the
classifier to make a choice. We can assign values based on if the resulting probability is greater than 0.50
to be the output. With probabilities it is easy to recognize when a model has a high degree of certainty
(high probabilities). In addition, we can compare what types of inputs lead to uncertainty for the model
(mid-range probabilities).

6.2 Logistic Regression Model

The sigmoid function takes arbitrarily large and small numbers then maps them between 0 and 1. We
can input a score to this function and receive a probability so that we will be able to take gradient descent
to train the model. The use of the sigmoid function in this way is called the logistic regression model.

Definition 6.2: Logistic Regression Classifier

P (y = +1 | xi, w) = sigmoid(Score(xi)) =
1

1 + e�wTh(xi)

This model allows its objective function to be trained such that P (y = +1 |xi, w) can be maximized for some
input x and weights w. The goal is to maximize correct behavior / classification and minimize incorrect
behavior of the model. Also, it is important to remember that in a binary classification, or for any number
of classes, the probabilities must sum to 1. For binary classification P (y = �1 |xi, w) = 1�P (y = +1 |xi, w).
We can combine these terms and use the logistic regression definition to show this:

P (y = �1 | xi, w) = 1� P (y = +1 | xi, w) (6.15)

= 1� 1

1 + e�wTh(xi)
(6.16)

=
e
�wTh(xi)

1 + e�wTh(xi)
(6.17)

In order to train our model we want to maximize the likelihood function. The likelihood function in this
case is:

Definition 6.3: Likelihood Function for Logistic Regression

`(w) =
nY

i

P (y(i)|x(i)
, w)

This seems di↵erent from regression where previously we wanted to minimize our error from the objective
function by taking the argmin respective to the weights. However, in this case we are maximizing (argmax
respective to weights) the likelihood function (maximizing the likelihood of a correct decision is essentially
the same as minimizing error).
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ŵ = argmax
w

`(w) (6.18)

= argmax
w

1

n

nY

i=1

P (y(i)|x(i)
, w) (6.19)

= argmax
w

1

n

nX

i=1

log(P (y(i)|x(i)
, w)) (From product to sum of logs) (6.20)

When we adjust our weights to find this point it is called the Maximum Likelihood Estimate (MLE). Re-
member that maximizing our likelihood is the same as minimizing our error for our model so that we have
a high probability for a correct prediction and a low probability for incorrect (Definition 6.3).

Definition 6.4: Log-Likelihood Loss Function

L(w) =
nX

i=1

log(P (y(i)|x(i)
, w))

Thus far, everything discussed for classification has been a binary +1 or -1 classification but we can also
represent multi-class classification problems. Previously we used a sigmoid function to turn the score of some
input into a probability, which then uses a Log-Likelihood to measure the loss for the binary classification.
For multi-class classification we will use the softmax function instead of the sigmoid function. We will still
use the Log-Likelihood to measure the loss. The combination of these two is called cross-entropy loss
which we will cover in more depth later in deep learning.

Just like in regression, the logistic regression model can predict simple problems quite well if there is an
easy linear separation between points. But like regression again we can model more complicated problems
by including more features and/or more complex features.

Example(s)

For instance, instead of only using two words as features for our sentiment review classifier:
h1(x) = number of ”awesome” words
h2(x) = number of ”awful” words

We could use more features with 2 being more complex, like this:
h1(x) = number of ”awesome” words
h2(x) = number of ”awful” words

h3(x) = (number of ”awesome” words)2

h4(x) = (number of ”awful” words)2

However, it is important to remember that just like regression a logistic regression model can overfit just
like in regression. To avoid this, just as before, we can use regularization techniques including the L1 and
L2 norms which can change our quality metric to avoid overfitting, and in the case of L1, aid in feature
selection. The coe�cient paths will follow similar trajectories so the same ideas of comparing models with
di↵erent hyperparameters and regularization techniques using only MSE on validation data still applies.

It is important to remember that while the plots from above show the decision boundaries, we are still repre-
senting our result as a probability / certainty of the model’s output. When using regularization, smoothness
can be introduced to better represent areas of certainty and uncertainty. Increasing � corresponding to
increasing the amount of regularization, for L2 especially, will increase the amount of this white / uncertain
area in an attempt to resist overfitting.
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Figure 6.27: Simple and quadratic classification boundaries

Figure 6.28: Overfit classification boundaries

Figure 6.29: Regularized plotted probabilities

6.3 Gradient Ascent

As previously stated, unlike a linear regression, we do not have a closed form solution for this problem.
Instead, we must use an iterative method to find the global maximum for the function (equation 6.6) like
gradient ascent. In gradient ascent, since we cannot compute the solution with a closed form, we must move
towards the maximum step by step.
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Algorithm 2 Gradient Ascent

Start with random weights w

while w has not converged do w = w + ↵�L(w) - ↵ = Learning Rate
- �L(w) = Gradient of loss function on weights w

Remember that our learning rate is important as it controls how large of a step we take during gradient
ascent where a learning rate that is too small could take too long to converge but a large learning rate
may result in gradient ascent never reaching convergence. This process for choosing the learning rate as a
hyperparameter often requires lots of trial and error but is necessary for a fast, yet reliable, gradient ascent.
Often we use values that are exponentially spaced out.

Figure 6.30: E↵ect of di↵erent learning rates.

Previously we discussed how di↵erent hyperparameters can a↵ect our model’s performance and what we
should be looking for in hyperparameters. For fine-tuning hyperparameters, two methods are commonly
used for finding the optimal values: grid search and random search

Definition 6.5: Grid Search

Start by defining a ”grid” of hyperparameter values and evaluate the model at every position on the
grid returning the argmin of the grid.

Definition 6.6: Random Search

Define a searching domain for possible hyperparameter values and randomly sample points in that
domain evaluating the model each time.

Using these methods we can search for the hyperparameter or set of hyperparameters which results in the
lowest error for the validation set. When we have multiple sets of hyperparameters to choose from in either
grid or random search, the process is repeated so that every combination is tried together, usually involving
nested for loops.

The learning rate in gradient ascent does not need to be fixed, though. Ideally, gradient ascent could ascend
quickly while still being reliable enough to reach some loss / weight value convergence. Note that we can
either assess convergence by the lack of changing error or more ideally by the lack of changing weight values.
We could start with large step sizes, then progressively lower the learning rate each epoch / iteration of
gradient ascent where t is the number of iterations.

↵t =
↵0

t
(6.21)
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To compute the gradient at each iteration for gradient ascent (indicating which direction we should go) we
have to calculate the loss from each data point to calculate the gradient of an update. This means that for
large data sets especially, gradient ascent can be very computationally expensive, even with optimal learning
rates. One idea for avoiding this is to simply not calculate the loss for each data point at each iteration. Less
work means our process can speed up! Instead, we can sample a small number of points from the training
set, rather than the entire set, to calculate the gradient at each epoch to decrease computational time. This
idea is called stochastic gradient ascent/descent. In practice, this is used widely as most often each step in
gradient ascent/descent does not require the entire data set and by randomly sampling the model will still
be able to learn well.

The number of points used at each step can vary widely from half of the data set to only 1 single data point.
Clearly, 1 single data point is computationally faster, but might require more iterations to converge, or not
converge at all if the data is particularly noisy. These batch sizes can change in size widely, largely depending
on the noise and size of the data set being trained on and can be thought of as another hyperparameter
similar to the learning rate.

In review of gradient ascent and the logistic regression model, we have learned that

• Maximizing the likelihood in a logistic regression model.

• Predictions are made using probabilities.

• We can use the sigmoid function to turn a score into a probability.

• To prevent overfitting regularization should still be used.

• Gradient ascent/descent must be used as there is no closed form solution to our objective function.

• Learning rate in gradient ascent/descent are important for gradient ascent/descent convergence

• Stochastic gradient ascent/descent is a good option when working with large data sets.

In the following chapter other classification models will be discussed.
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