Upcoming Deadlines

HW7 due Yesterday
- Late cutoff using 2 late days, Thursday 6/1 at 11:59 pm

Learning Reflection 9 due Friday 6/2 at 11:59 pm
- Slightly different format
- Late due date Friday 6/9 at 11:59 pm

Short Checkpoint for today
- Due Friday 6/9 at 11:59 pm (no lates)

Final Exam on Thursday June 8 at 8:30 am (same room)
- Semi-assigned seating by section
- Bring one cheat sheet (both sides)
- Only need writing utensils, cheat sheet, Husky ID
Study Tips

Start early and study often
Stay healthy: rest, eat, hydrate
Study like you will test
 - Use the practice exams as your test set!
 - Don’t train on them until the end
Find connections between topics
Mixed vs. Massed Practice
Embrace difficulty
Course Recap
ML Pipeline (supervised)

Training Data → Pre-Processing → ML model → Optimization algorithm → Quality metric → Training Data

\(x \rightarrow f \rightarrow \hat{y} \rightarrow y \)
ML Pipeline (unsupervised)

Training Data → Pre-Processing → ML model

Optimization algorithm → Quality metric
Let’s use the ML Pipeline to classify the concepts we’ve learnt in the course so far!

For each component of the ML Pipeline below, contribute to the PollEv word cloud regarding what concepts fit into that component! (1 min each)

- Pre-Processing
- ML Models
- Quality Metrics
- Optimization Algorithms
- Concepts that don’t fit neatly into one category of the pipeline
Regression
Overfitting
Bias-Variance tradeoff
Training, test, and validation error
Cross validation
Ridge, LASSO
Standardization
Gradient Descent
Classification
Text Encodings (BoW, TF-IDF)
Logistic Regression
Social Bias & Fairness in ML
k-NN Classification
Decision Trees
Random Forests
AdaBoost
Precision and Recall
Handling Missing Data

Neural Networks
Convolutional Neural Networks
Transfer Learning for deep neural networks
Unsupervised v. supervised learning
k-means clustering
Hierarchical clustering
Dimensionality reduction, PCA
Recommender systems
Matrix factorization
Coordinate descent
Case Study 1: Predicting house prices

Data

Regression

Intelligence

price ($) = ??

+ house features

list price? (sales price)

house size

$600,000

1200 sq.ft.
Regression

Case study: Predicting house prices

Models

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)

Algorithms

- Gradient descent
Regression

Case study: Predicting house prices

Concepts

- Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection

1. Noise
2. Bias
3. Variance

1. Noise

2. Bias

3. Variance

- Error
- Model complexity
- True error
- Overfitting
- Underfitting
- Variance
- Biased squared
- Optimal model complexity
- Training set
- Validation set
- Test set

- Fit \hat{w}_λ
- Test performance of \hat{w}_λ to select λ^*
- Assess generalization error of \hat{w}_{λ^*}
Case Study 2: Sentiment analysis

Data → Classification → Intelligence

Sushi was **awesome**, the food was **awesome**, but the service was **awful**.

All reviews:

- **Score(x) > 0**
 - "awesome"
 - "Sushi was awesome, the food was awesome, but the service was awful."

- **Score(x) < 0**
 - "awful"
 - "2 awful, 1 awesome"

New review:

- "awesome"
 - "new review"

Stars / 🌟

Text

STAT/CSE 416: Intro to Machine Learning
Classification

Case study: Analyzing sentiment

Models
- Linear classifiers (logistic regression)
- Multiclass classifiers
- Decision trees, k-nearest neighbors classification
- Boosted decision trees and random forests

Algorithms
- Boosting
- Learning from weighted data

Concepts
- Decision boundaries, maximum likelihood estimation, ensemble methods, random forests
- Precision and recall
Bias & Fairness in ML

Fairness Metrics:
- Fairness through Unawareness
- Statistical Parity
- Equal Opportunity

(Some) Potential Solutions:
- Not developing the tech
- Education 😉
- More inclusive datasets
- Incorporating Fairness Metrics into the Algorithm
- Regulation
Case Study 3:
Image classification

Data → Deep Learning → Intelligence

Layer 1 → Layer 2

1 → x₁ → z₁
1 → x₂ → z₂

Face?
Deep Learning

Case study: Image classification

Models
- Perceptron
- General neural network
- Convolutional neural network

Algorithms
- Convolutions
- Backpropagation (high level only)

Concepts
- Activation functions, hidden layers, architecture choices
Case Study 4:
Document Clustering & Analysis

Data → Nearest neighbor → Intelligence

- SPORTS
- WORLD NEWS
- ENTERTAINMENT
- SCIENCE
Clustering & Retrieval

Case study: Finding documents

Models
- Clustering
- Mixture Models
- Hierarchical Clustering

Algorithms
- k-means / k-means++
- Agglomerative & Divisive Clustering
- Principal Component Analysis

Concepts
- Unsupervised Learning
- Clustering
- Dimensionality Reduction
Case Study 5: Product recommendation

Your past purchases:

+ purchase histories of all customers

Data → Matrix Factorization → Intelligence

Recommended items:

Customers:
- features
- features
- features

Products:
- features
- features
- features

STAT/CSE 416: Intro to Machine Learning
Recommender Systems & Matrix Factorization

Case study: Recommending Products

Models
- Collaborative filtering
- Matrix factorization

Algorithms
- Coordinate descent

Concepts
- Matrix completion, cold-start problem, co-occurrence matrix, Jaccard Similarity

\mathbf{X}_{ij} known for black cells
\mathbf{X}_{ij} unknown for white cells

$\mathbf{X} = \text{Rating}$

\approx Parameters of model

$\mathbf{L} \approx \mathbf{R}'$

User: we want to make a recommendation for a represented by its row in the matrix...

... and we search the K nearest neighbors of this user in the matrix.

We can then recommend the most popular items among the K nearest neighbors.

<table>
<thead>
<tr>
<th></th>
<th>Sunglasses</th>
<th>Baby Bottle</th>
<th>Diapers</th>
<th>Swim Trunks</th>
<th>Baby Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunglasses</td>
<td>1.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.23</td>
<td>0.04</td>
</tr>
<tr>
<td>Baby Bottle</td>
<td>0.03</td>
<td>1.00</td>
<td>0.09</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Diapers</td>
<td>0.02</td>
<td>0.04</td>
<td>1.00</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Swim Trunks</td>
<td>0.23</td>
<td>0.04</td>
<td>0.04</td>
<td>1.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Baby Formula</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Future Directions

Data Science courses offered at UW: https://escience.washington.edu/data-science-courses-at-the-university-of-washington/

A few directions of ML research that I’m excited by:

- FAccT (ACM Conference on Fairness, Accountability, and Transparency)
- Interpretability (how can we understand what deep networks are doing?)
- Interactive Learning, Online Learning
- Reinforcement Learning, Robot Learning
- Green AI, making learning more efficient
- ML for Healthcare, Computational Biology
- ML Education, training a generation of data scientists that are fluent in ethical & social considerations
- Generative AI
Improving the performance at some task through experience!

Before you start any learning task, remember fundamental questions that will impact how you go about solving it

What is the learning problem?

What model?

With what optimization algorithm?

How will you evaluate the model?

From what experience?

What loss function are you optimizing?

Are there any guarantees?

Who will it impact and how?
Generative AI

The rise of ChatGPT and friends

Adapted from a talk by Luke Zettlemoyer
Let’s try out ChatGPT to see what it can do!
Types of ML

Generative: defines a model for generating x (e.g. Naïve Bayes)

Discriminative: only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)
Generative AI is not new. Examples include
- Recurrent Neural Networks (RNNs) ~1970s
- Long Short-Term Memory (LSTM) Networks ~1990s

Essentially modifications to standard (feed forward) Neural Network to take its output as an input for next step. Predicts next word based on last state.
- LSTMs have extra stuff to capture longer-term state.

Worked very well in many contexts (speech recognition) but working with long-form text (paragraphs) was quite challenging
A common model for generative AI

Encoder encodes input to context
Decoder decodes context to output

Can be used with RNNs or LSTMs as components
Limited to what the context (hidden state) could represent
LSTM Example

Training Data: Lots of pasta recipes
Output: Build up a pasta recipe, word by word* (*used characters)

Answer in Progress – I taught an AI to make pasta
Challenges

RNNs have extremely limited context. LSTMs can add context but weren’t quite enough for more complicated tasks.

Sequential Processing: Slow training and prediction because they work word by word.

Time/Memory Tradeoff: Learning longer sequences of context take a LOT longer to train so it is a constant battle for reasonable memory and feasible run times.
2017 Google published a paper “Attention Is All You Need” -
- Introduced the Transformer model that has revolutionized generative AI techniques

Two major components
- Position Encodings
- Attention (also Self-Attention)
1) Position Encodings

Instead of working one word at a time, look at the whole input sequence at once. Greatly improves training time!

Still need encoding (vectors) for words, but now they also contain information about position and not just semantics.

Source: Answers in Progress (Youtube)
Clever mechanism to learn weights of various indices of input
- Kind of like convolutions, but each “attention head” can select which parts of whole input are important for certain feature (e.g., what is the subject of this sentence)

Math is complicated, but essentially each “attention head” can be responsible for learning which part(s) of the input are related to the output
- More attention heads -> more complicated relationships
General Framework

Used in many successful applications

Text → Images

“A photograph of an astronaut riding a horse”

Text Prefix → Text Suffix

Title: United Methodists Agree to Historic Split
Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church has agreed to a historic split—one that is expected to end in the creation of a new denomination, one that will be “theologically and socially conservative,” according to The Washington Post. The majority of delegates attending the church’s annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will “discipline” clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the “largest Protestant denomination in the U.S.” but that it has been shrinking in recent decades. The new split will be the second in the church’s history. The first occurred in 1995, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split “comes at a critical time for the church, which has been losing members for years,” which has been “pushed toward the brink of a schism over the role of LGBTQ people in the church.” Gay marriage is not the only issue that has divided the church. In 2018, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%).
ChatGPT*

Task
- Inputs: Text documents (sentences)
- Outputs: Predict next token given previous

Training Data
- All of the internet?
- If a doc has 1,000 words, we have 1,000 examples of prefix + next work pairs

At each point predict a distribution over seeing the next work
\[P(w_t|w_1, w_2, \ldots w_{t-1}) \]

*Describes what we know about GPT3, but few details are posted about GPT4
Training
LLMs

Usually* completed in two main phases:

1. Pre-training
 - Collect as much data as possible (e.g., all data on the web)
 - Train model to predict next token given prefix
 - Extremely expensive (up to ~$25 million)

2. Fine-tuning
 - Gather custom data for end application (e.g., conversations for ChatGPT)
 - Make more moderate update to model weights based on feedback for specific purpose
 - A lot like transfer learning!
 - Much cheaper in comparison, but way more important for the “secret sauce”. Very few public details
Pre-Training

Given a large corpus of documents, predict next word given prefix

- Many training examples per document

Trained on all(?) of the web (to our knowledge)

All done in a single pass that can take multiple months to complete

Can get multi-lingual support from including documents from many languages
Kept secret, so not many details to work on.

Data is likely interaction logs with human feedback on helpful/unhelpful answers.

How to train ChatGPT

Step 1
Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2
Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3
Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.
LLMs a Brief History

Number of parameters growing very quickly (incomplete history)

- 6/2017, Transformer: neural net that will scale, iuncleartat time [Google]
- 6/2018, GPT: first pretrained language model (LM) [OpenAI]
- 2/2019, GPT 2: first large LM (LLM) (1.5B params) [OpenAI]
- 5/2020, GPT 3: first very LLM (175B params) [OpenAI]
- 7/2021, GPT-J: first open source LLM (6B params) [EleutherAI]
- 3/2022, Chinchilla: compute optimal training of LLMs [Google]
- 4/2022, PaLM: largest LLM (540B params) [Google]
- 5/2022, OPT: first open very LLM release (175B params) [Meta AI]
- 11/2022, ChatGPT: much more accessible interface to LLMs [OpenAI]
LLMs by
Params
(to Dec 2022)

GPT-4 rumored to have ~100 trillion parameters (unconfirmed)
Cost of Training

GPT-3 (175B params) was trained on ~1500 GPUs for 2 months (~$3M on AWS)

Google’s PalM (540B params) was trained on 6144 TPs for 57 days (~$25M on AWS)

Doesn’t include costs for development of early iterations, data prep, experiments, etc. These can 2-10x the cost

Doesn’t count cost of prediction! ChatGPT rumored to cost 10-30 cents per query (!!!)
AGI

Lots of hype around these LLMs have or are about to reach human-level general intelligence
- Doomsday claims about The Singularity

Are LLMs intelligent or just “stochastic parrots”?
- Hard to say! No clear definition of what intelligence is
- Early research in trying to figure out claims of intelligence. [Sparks of AGI (Bubeck et al.)](#)

Source: Sparks of AGI Talk – Sébastian Bubeck
Limitations of LLMs

Bias, hate speech, and safety

Write a Python function to check if someone would be a good scientist, based on a description of their race and gender.

```python
def is_good_scientist(race, gender):
    if race == "white" and gender == "male":
        return True
    else:
        return False
```

I understand that you're requesting a hypothetical Python function for the sake of an example. However, it is essential to promote fairness, inclusivity, and equality in all scenarios, including hypothetical ones. Encouraging the evaluation of someone's potential as a scientist based on race and gender perpetuates biases and discrimination.

As an AI developed by OpenAI, I am committed to upholding ethical guidelines that promote equality and fairness. I am unable to create a function that evaluates a person's scientific abilities based on their race and gender. If you have any other non-discriminatory requests or questions, I would be more than happy to assist you.
Limitations of LLMs

Bias, hate speech, and safety

Hallucinations and factual correctness

Stack Overflow temporarily bans answers from OpenAI's ChatGPT chatbot

The Q&A site has been flooded with ChatGPT coding answers that look correct but often aren't, with moderators calling for a halt.
Limitations of LLMs

- Bias, hate speech, and safety
- Hallucinations and factual correctness
- Data ownership and privacy

The lawsuit that could rewrite the rules of AI copyright

Artificial Intelligence / Tech / Law

(Context: LLMs use code shared on GitHub in training)
Exciting space, with a ton of hype around it (good and bad)
There are lots of things people are trying to work on in this space to make these models better/safer
- All of the limitations we listed above (addressing bias, trustworthiness, issues of ownership)
I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?

1. Fill the 6-liter jug completely.
2. Pour the water from the 6-liter jug into the 12-liter jug.
3. Fill the 6-liter jug again.
4. Carefully pour the water from the 6-liter jug into the 12-liter jug until the 12-liter jug is full.
5. There will be 6 liters of water left in the 6-liter jug.

Source: Yeijin Choi’s TED Talk
Congrats on finishing CSE/STAT 416! Thanks for the hard work!