CSE/STAT 416
Precision/Recall
k-Nearest Neighbors
Pre-Class Video

Hunter Schafer
Paul G. Allen School of Computer Science & Engineering
University of Washington

May 8, 2021
Pre-Lecture Video
Detecting Spam

Imagine I made a “Dummy Classifier” for detecting spam

The classifier ignores the input, and always predicts spam.

This actually results in 90% accuracy! Why?
- Most emails are spam...

This is called the **majority class classifier**.

A classifier as simple as the majority class classifier can have a high accuracy if there is a **class imbalance**.

A class imbalance is when one class appears much more frequently than another in the dataset

This might suggest that accuracy isn’t enough to tell us if a model is a good model.
Always digging in and ask critical questions of your accuracy.

Is there a **class imbalance**?

How does it compare to a baseline approach?
- Random guessing
- Majority class
- ...

Most important: **What does my application need?**
- What's good enough for user experience?
- What is the impact of a mistake we make?
For binary classification, there are only two types of mistakes:

\[\hat{y} = +1, \ y = -1 \]
\[\hat{y} = -1, \ y = +1 \]

Generally we make a **confusion matrix** to understand mistakes.

Predicted Label

<table>
<thead>
<tr>
<th>True Label</th>
<th>Predicted Label</th>
<th>True Positive (TP)</th>
<th>False Negative (FN)</th>
<th>False Positive (FP)</th>
<th>True Negative (TN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binary Classification Measures

Notation

\[C_{TP} = \#TP, \quad C_{FP} = \#FP, \quad C_{TN} = \#TN, \quad C_{FN} = \#FN \]

\[N = C_{TP} + C_{FP} + C_{TN} + C_{FN} \]

\[N_P = C_{TP} + C_{FN}, \quad N_N = C_{FP} + C_{TN} \]

Error Rate

\[\frac{C_{FP} + C_{FN}}{N} \]

Accuracy Rate

\[\frac{C_{TP} + C_{TN}}{N} \]

False Positive Rate (FPR)

\[\frac{C_{FP}}{N_N} \]

False Negative Rate (FNR)

\[\frac{C_{FN}}{N_P} \]

True Positive Rate or Recall

\[\frac{T_P}{N_P} \]

Precision

\[\frac{T_P}{C_{TP} + C_{FP}} \]

F1-Score

\[\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \]
Change Threshold

What if I never want to make a false positive prediction?

Always predict negative \((\alpha = \infty)\)

What if I never want to make a false negative prediction?

Always predict positive \((\alpha = -\infty)\)

One way to control for our application is to change the scoring threshold. (Could also change intercept!)

If \(\text{Score}(x) > \alpha\):
- Predict \(\hat{y} = +1\)

Else:
- Predict \(\hat{y} = -1\)
What happens to our TPR and FPR as we increase the threshold?

ROC Curve

\[
\frac{C_{TP}}{N_p} \rightarrow 1 \quad \text{as} \quad x > \alpha
\]

\[
(0.5, 0.5)
\]
Often with binary classification, we treat the positive label as being the more important of the two. We then often then focus on these metrics:

Precision: Of the ones I predicted positive, how many of them were actually positive?

Recall: Of all the things that are truly positive, how many of them did I correctly predict as positive?
What fraction of the examples I predicted positive were correct?

Sentences predicted to be positive:

\[\hat{y}_i = +1 \]

- Easily best sushi in Seattle. ✔
- The seaweed salad was just OK, vegetable salad was just ordinary. ✗
- I like the interior decoration and the blackboard menu on the wall. ✔
- The service is somewhat hectic. ✗
- The sushi was amazing, and the rice is just outstanding. ✔
- All the sushi was delicious. ✔

Only 4 out of 6 sentences predicted to be positive are actually positive.

Precision:

\[\text{precision} = \frac{C_{TP}}{C_{TP} + C_{FP}} = \frac{4}{4+2} = \frac{2}{3} \]
Recall

Of the truly positive examples, how many were predicted positive?

\[
\text{recall} = \frac{C_{TP}}{N} = \frac{C_{TP}}{C_{TP} + C_{FN}}
\]

Sentences from all reviews for my restaurant

True positive sentences: \(y_i = +1 \)

Predicted positive \(\hat{y}_i = +1 \)

- Easily best sushi in Seattle.
- The seaweed salad was just OK, vegetable salad was just ordinary.
- I like the interior decoration and the blackboard menu on the wall.
- The service is somewhat hectic.
- The sushi was amazing, and the rice is just outstanding.
- All the sushi was delicious.

Predicted negative \(\hat{y}_i = -1 \)

- The seaweed salad was just OK, vegetable salad was just ordinary.
- My wife tried their ramen and it was delicious.
- The service is somewhat hectic.
- My wife tried their ramen and it was pretty forgettable.
- The service was perfect.

\[
= \frac{4}{4+2} = \frac{2}{3}
\]
An optimistic model will predict almost everything as positive
High recall, low precision

A pessimistic model will predict almost everything as negative
High precision, low recall

PESSIMISTIC MODEL
Finds few positive sentences, but includes no false positives

OPTIMISTIC MODEL
Finds all positive sentences, but includes many false positives

Want to find many positive sentences, but minimize risk of incorrect predictions!!
Controlling Precision/Recall

Depending on your application, precision or recall might be more important.

Ideally you will have high values for both, but generally increasing recall will decrease precision and vice versa.

For logistic regression, we can control for how optimistic the model is by changing the threshold for positive classification.

Before
\[\hat{y}_i = +1 \text{ if } \hat{P}(y = +1|x_i) > 0.5 \text{ else } \hat{y}_i = -1 \]

Now
\[\hat{y}_i = +1 \text{ if } \hat{P}(y = +1|x_i) > t \text{ else } \hat{y}_i = -1 \]
Precision-Recall Curve

\[
\frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{0}{0} = 1
\]
Can try every threshold to get a curve like below

Precision-Recall Curve
Sometimes, Classifier B is strictly better than Classifier A.
Most times, the classifiers are incomparable.
Often come up with a single number to describe it
F1-score, AUC, etc.
Remember, what your application needs is most important

Also common to use **precision at k**
If you show the top \(k \) most likely positive examples, how many of them are true positives

Showing \(k=5 \) sentences on website

<table>
<thead>
<tr>
<th>Sentences model most sure are positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easily best sushi in Seattle.</td>
</tr>
<tr>
<td>My wife tried their ramen and it was pretty forgettable.</td>
</tr>
<tr>
<td>The sushi was amazing, and the rice is just outstanding.</td>
</tr>
<tr>
<td>All the sushi was delicious.</td>
</tr>
<tr>
<td>The service was perfect.</td>
</tr>
</tbody>
</table>

precision at \(k = 0.8 \)
Roadmap

1. Housing Prices - Regression
 - Regression Model
 - Assessing Performance
 - Ridge Regression
 - LASSO

2. Sentiment Analysis – Classification
 - Classification Overview
 - Logistic Regression
 - Bias / Fairness
 - Decision Trees
 - Ensemble Methods

3. Deep Learning
 - Neural Networks
 - Convolutional Neural

4. Document Retrieval – Clustering and Similarity
 - Precision / Recall
 - k-Nearest Neighbor
 - Kernel Methods
 - Locality Sensitive Hashing
 - Clustering
 - Hierarchical Clustering
Consider you had some time to read a book and wanted to find other books similar to that one.

If we wanted to write a system to recommend books
- How do we measure similarity?
- How do we search over books?
- How do we measure accuracy?

Big Idea: Define an embedding and a similarity metric for the books, and find the “nearest neighbor” to some query book.
Nearest Neighbors
1-Nearest Neighbor

Input

\(x_q \): Query example (e.g. my book)
\(x_1, \ldots, x_n \): Corpus of documents (e.g. Amazon books)

Output

The document in corpus that is most similar to \(x_q \)

\[
 x^{NN} = \arg\min_{x_i \in [x_1, \ldots, x_n]} \text{distance}(x_q, x_i)
\]

It’s very critical to properly define how we represent each document \(x_i \) and the similarity metric \(\text{distance} \)! Different definitions will lead to very different results.
1-Nearest Neighbor

How long does it take to find the 1-NN? About n operations

\[n = 100,000,000 \]

Input: x_q

$x^{NN} = \emptyset$

$nn_dist = \infty$

for $x_i \in [x_1, \ldots, x_n]:$

\[\text{dist} = \text{distance}(x_q, x_i) \]

if $\text{dist} < nn_dist:$

\[x^{NN} = x_i \]

$nn_dist = \text{dist}$

Output: x^{NN}
k-Nearest Neighbors

Input

\(x_q \): Query example (e.g. my book)
\(x_1, \ldots, x_n \): Corpus of documents (e.g. Amazon books)

Output

List of \(k \) documents most similar to \(x_q \)

Formally
k-Nearest Neighbors

Same idea as 1-NN algorithm, but maintain list of k-NN

\[
\text{Input: } x_q \\
X^{k\text{NN}} = [x_1, \ldots, x_k] \\
nn_\text{dists} = [\text{dist}(x_1, x_q), \text{dist}(x_2, x_q), \ldots, \text{dist}(x_k, x_q)]
\]

for \(x_i \in [x_{k+1}, \ldots, x_n] \):

\[
dist = \text{distance}(x_q, x_i)
\]

if \(dist < \max(nn_\text{dists}) \):

remove largest \(dist \) from \(X^{k\text{NN}} \) and \(nn_\text{dists} \)

add \(x_i \) to \(X^{k\text{NN}} \) and distance \((x_q, x_i) \) to \(nn_\text{dists} \)

\[
\text{Output: } X^{k\text{NN}}
\]
k-Nearest Neighbors

Can be used in many circumstances!

Retrieval

Return X^{k-NN}

Regression

$$\hat{y}_i = \frac{1}{k} \sum_{j=1}^{k} x_{NNj}$$

Classification

$$\hat{y}_i = \text{majority}_\text{class}(X^{k-NN})$$
In the regression/classification settings, what is the relationship between k for k-NN and the bias/variance of the model? Each option completes the sentence “As k increases ...”

- Bias increases, Variance increases
- Bias decreases, Variance increases
- Bias increases, Variance decreases
- Bias decreases, Variance decreases

Bias increases, Variance decreases
Brain Break
Embeddings
While the formalization of these algorithms can be a bit tedious, the intuition is fairly simple. Find the 1 or k nearest neighbors to a given document and return those as the answer.

This intuition relies on answering two important questions:

- How do we represent the documents x_i?
- How do we measure the distance $distance(x_q, x_i)$?
Like our previous ML algorithms, we will want to make a vector out of the document to represent it as a point in space.

Simplest representation is the **bag-of-words** representation.

Each document will become a \(W \) dimension vector where \(W \) is the number of words in the entire corpus of documents.

The value of \(x_i[j] \) will be the number of times word \(j \) appears in document \(i \).

This ignores order of words in the document, just the counts.

\[
\text{"I like dogs"} \rightarrow [1, 1, 1, 0]
\]

\[
\text{"I like cats"} \rightarrow [1, 1, 0, 1]
\]

\[
\text{"I like dogs dogs"} \rightarrow [1, 1, 2, 0]
\]
Bag of Words

Pros
- Very simple to describe
- Very simple to compute

Cons
- Common words like "the" and "a" dominate counts of uncommon words
- Often it’s the uncommon words that uniquely define a doc.
TF-IDF

Goal: Emphasize important words

- Appear frequently in the document (common locally)
- Appears rarely in the corpus (rare globally)

Term frequency =

```
"the" appears in 200 times, \( \text{TF}(\text{"the"}) = \frac{200}{\text{total}} \)
```

Inverse doc freq. =

```
\text{IDF}(\text{"the"}) = \log \left( \frac{1000}{1+\text{# docs using word}} \right) \\
\approx \log(1) = 0
```

Do a pair-wise multiplication to compute the TF-IDF for each word

```
\text{tf} \times \text{idf}
```

Words that appear in every document will have a small IDF making the TF-IDF small
What is the $TF - IDF(\text{“rain”}, Doc_1)$ with the following documents (assume standard pre-processing)

Doc 1: It is going to rain today.
Doc 2: Today I am not going outside.
Doc 3: I am going to watch the season premiere.

$$TF-IDF(\text{“rain”}, Doc_1) = TF(\text{“rain”}, Doc_1) \cdot IDF(\text{“rain”})$$

$$TF(\text{“rain”}, Doc_1) = \frac{1}{6}$$

$$IDF(\text{“rain”}) = \log \left(\frac{3}{1+1} \right)$$

$$TF-IDF(\text{“rain”}, Doc_1) = \frac{1}{6} \cdot \log (1.5) = 0.07$$
Euclidian Distance

Now we will define what similarity/distance means

Want to define how “close” two vectors are. A smaller value for distance means they are closer, a large value for distance means they are farther away.

The simplest way to define distance between vectors is the Euclidean distance

\[
\text{distance}(x_i, x_q) = \left\| x_i - x_q \right\|_2
\]

\[
= \sqrt{\sum_{j=1}^{D} (x_i[j] - x_q[j])^2}
\]
Another common choice of distance is the **Manhattan Distance**

\[
distance(x_i, x_q) = \left\| x_i - x_q \right\|_1 = \sum_{j=1}^{D} |x_i[j] - x_q[j]|
\]
Weighted Distances

Some features vary more than others or are measured in different units. We can weight different dimensions differently to make the distance metric more reasonable.

Weighted Euclidean distance

\[
\text{weight}(x_i, x_q) = \sqrt{\sum_{j=1}^{D} a_j^2 (x_i[j] - x_q[j])^2}
\]

Specify weights as a function of feature spread

For feature j:

\[
\frac{1}{\max_i(x_i[j]) - \min_i(x_i[j])} = a_j
\]
Another natural similarity measure would use
\[x_i^T x_q = \sum_{j=1}^{D} x_i[j] x_q[j] \]

Notice this is a measure of similarity, not distance
This means a bigger number is better
Cosine Similarity

Should we normalize the vectors before finding the similarity?

$$similarity = \frac{x_i^T x_q}{||x_i||_2 ||x_q||_2} = \cos(\theta)$$

Note:
Not a true distance metric
Efficient for sparse vectors!
Cosine Similarity

In general

\[-1 \leq \text{cosine similarity} \leq 1\]

For positive features (like TF-IDF)

\[0 \leq \text{cosine similarity} \leq 1\]

Define

\[\text{distance} = 1 - \text{similarity}\]
To Normalize or Not To Normalize?

Not normalized

Similarity = 13

Similarity = 52
To Normalize or Not To Normalize?

<table>
<thead>
<tr>
<th></th>
<th>1/6</th>
<th>0/6</th>
<th>5/6</th>
<th>3/6</th>
<th>0/6</th>
<th>1/6</th>
<th>0/0</th>
<th>0/0</th>
<th>0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1/2</td>
<td>0/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Similarity = 13/24

<table>
<thead>
<tr>
<th></th>
<th>1/6</th>
<th>0/6</th>
<th>5/6</th>
<th>3/6</th>
<th>0/6</th>
<th>1/6</th>
<th>0/0</th>
<th>0/0</th>
<th>0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1/2</td>
<td>0/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Similarity = 13/24
Normalization is not desired when comparing documents of different sizes since it ignores length.

In practice, can use multiple distance metrics and combine them using some defined weights.
Not a real Poll Everywhere question, just time to work!

For the given documents, what are their Euclidean Distance and Cosine Similarity?

Assume we are using a bag of words representation

Document 1: “I really like dogs”
Document 2: “dogs are really really awesome”

Steps:
 - Write out bag of words vectors
 - Compute Euclidean distance
 - Compute Cosine similarity
Doc1 = “I really like dogs” Doc2 = “dogs are really really awesome”

Bow = [I, really, like, dogs, are, awesome]

$x_1 = [1, 1, 1, 1, 0, 0] \quad x_2 = [0, 2, 0, 1, 1, 1]$

Euclidean Distance: $\sqrt{(1-0)^2 + (1-2)^2 + (1-0)^2 + (1-1)^2 + (0-1)^2 + (0-1)^2} = \sqrt{5}$

Cosine Distance: $1 - \frac{x_1^T x_2}{\|x_1\|_2 \|x_2\|_2}$

$$d_{cos}(x_1, x_2) = 1 - \frac{1.0 + 1.2 + 1.0 + 1.1 + 0.1 + 0.1}{\sqrt{1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 0^2} \sqrt{1^2 + 2^2 + 1^2 + 2^2 + 0^2 + 1^2}}$$

$$= 1 - \frac{3}{\sqrt{4 \cdot 5}} \approx 0.433$$
Jaccard Similarity

Yet another popular similarity measure for text documents. Compare the overlap of words appearing in both documents

\[J(Doc_i, Doc_j) = \frac{|Doc_i \cap Doc_j|}{|Doc_i \cup Doc_j|} \]

Where \(Doc_i \) and \(Doc_j \) are sets of words in each doc
Theme: Use nearest neighbors to recommend documents.

Ideas:

- Precision and Recall Curves
- Implement a nearest neighbor algorithm
- Compare and contrast different document representations
 - Emphasize important words with TF-IDF
- Compare and contrast different measurements of similarity
 - Euclidean and weighted Euclidean
 - Cosine similarity and inner-product similarity