
CSE/STAT 416
Assessing Performance

Hunter Schafer
University of Washington
March 29, 2022

❓ Questions? Raise hand or sli.do #cs416
💬 Before Class: Did you get to do anything fun during the
(short) spring break?
🎵 Listening to: grentperez

https://open.spotify.com/artist/73BLwSX6gsNeVzS7DgI4xe?si=OccyY7oqRMCxyiJa3_ptVA

Pre-Class
Video 1

Feature Extraction

2

3

ML Pipeline

3

Training
Data

Pre-
Processing

ML
model

Quality
metric

Optimization
algorithm

y

x ŷ

⌃f- Historical Bias

- Representation

Bias

- Measurement Bias

- Deployment Bias

Higher Order
Features

This data doesn’t look exactly linear, why are we fitting a line
instead of some higher-degree polynomial?

We can! We just have to use a slightly different model!

𝑦𝑖 = 𝑤0 +𝑤1𝑥𝑖 +𝑤2𝑥𝑖
2 + 𝑤3𝑥𝑖

3 + 𝜖𝑖

4

Polynomial
Regression

Model
𝑦𝑖 = 𝑤0 +𝑤1𝑥𝑖 +𝑤2𝑥𝑖 +… +𝑤𝑝𝑥𝑖

𝑝
+ 𝜖𝑖

Just like linear regression, but uses more features!

How do you train it? Gradient descent (with more parameters)
5

Feature Value Parameter

0 1 (constant) 𝑤0

1 𝑥 𝑤1

2 𝑥2 𝑤2

… … …

p 𝑥𝑝 𝑤𝑝

Polynomial
Regression

How to decide what the right degree? Come back Wednesday!
6

Features
Features are the values we select or compute from the data
inputs to put into our model. Feature extraction is the process of
turning the data into features.

Model
𝑦𝑖 = 𝑤0ℎ0 𝑥𝑖 +𝑤1ℎ1 𝑥𝑖 +…+𝑤𝐷ℎ𝐷 𝑥𝑖 + 𝜖𝑖

= ෍

𝑗=0

𝐷

𝑤𝑗ℎ𝑗 𝑥𝑖 + 𝜖𝑖

7

Feature Value Parameter

0 ℎ0 𝑥 often 1 (constant) 𝑤0

1 ℎ1 𝑥 𝑤1

2 ℎ2(𝑥) 𝑤2

… … …

D ℎ𝐷(𝑥) 𝑤D

Adding
Other Inputs

Generally we are given a data table of values we might look at
that include more than one value per house.

▪ Each row is a single house.

▪ Each column (except Value) is a data input.

8

sq. ft. # bathrooms owner’s age … value

1400 3 47 … 70,800

700 3 19 … 65,000

… … … … …

1250 2 36 … 100,000

More Inputs -
Visually

Adding more features to the model allows for more complex
relationships to be learned

𝑦𝑖 = 𝑤0 +𝑤1 𝑠𝑞. 𝑓𝑡. + 𝑤2 # 𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚𝑠 + 𝜖𝑖

Coefficients tell us the rate of change if all other features are
constant

9

Notation Important: Distinction is the difference between a data input and
a feature.

▪ Data inputs are columns of the raw data

▪ Features are the values (possibly transformed) for the model
(done after our feature extraction ℎ(𝑥))

Data Input: 𝑥𝑖 = (𝑥𝑖 1 , 𝑥𝑖 2 ,… , 𝑥𝑖 𝑑)

Output: 𝑦𝑖
▪ 𝑥𝑖 is the 𝑖𝑡ℎ row

▪ 𝑥𝑖[𝑗] is the 𝑖𝑡ℎ row’s 𝑗𝑡ℎ data input

▪ ℎ𝑗 𝑥𝑖 is the 𝑗𝑡ℎ feature of the 𝑖𝑡ℎ row

This makes explicit, an often-implicit modeling choice of which
features to use and how to transform them. 10

Features
You can use anything you want as features and include as many
of them as you want!

Generally, more features means a more complex model. This
might not always be a good thing!

Choosing good features is a bit of an art.

11

Feature Value Parameter

0 1 (constant) 𝑤0

1 ℎ1 𝑥 … 𝑥 1 = sq. ft. 𝑤1

2 ℎ2(𝑥) … 𝑥 2 = # bath 𝑤2

… … …

D ℎ𝐷(𝑥) … like log 𝑥 7 ∗ 𝑥[2] 𝑤D

Linear
Regression
Recap

Dataset

𝑥𝑖, 𝑦𝑖 𝑖=1
𝑛 where 𝑥 ∈ ℝ𝑑, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑥 : ℝ𝑑 → ℝ𝐷

ℎ 𝑥 = ℎ0 𝑥 , ℎ1 𝑥 ,… , ℎ𝐷(𝑥)

Regression Model
𝑦 = 𝑓 𝑥 + 𝜖

= ෍
𝑗=0

𝐷

𝑤𝑗ℎ𝑗 𝑥 + 𝜖

= 𝑤𝑇ℎ 𝑥 + 𝜖

Quality Metric

𝑀𝑆𝐸 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 −𝑤𝑇𝑥𝑖
2

Predictor
ෝ𝑤 = argmin

𝑤
𝑀𝑆𝐸(𝑤)

ML Algorithm

Optimized using Gradient Descent

Prediction
ො𝑦 = ෝ𝑤𝑇ℎ(𝑥)

12

Pre-Class
Video 2

13

Assessing Performance

Polynomial
Regression

How do we decide what the right choice of 𝑝 is?
14

Polynomial
Regression

Consider using different degree polynomials on the same training set.

From estimating with your eyes, which one seems to have the lowest
MSE on this dataset?

It seems like minimizing the MSE on the training set is not the whole
story here …

15

(animation by
Pemi Nguyen)

Performance Why do we train ML models?

We generally want them to do well on unseen data.

If we choose the model that minimizes MSE on the data it learned
from, we are just choosing the model that can memorize, not the
one that generalizes well.

▪ Analogy: Just because you can get 100% on a practice exam
you’ve studied for hours, it doesn’t mean you will also get
100% on the real test that you haven’t seen before.

Key Idea: Assessing yourself based on something you learned
from generally overestimates how well you will do in the future!

16

Future
Performance

What we care about is how well the model will do on unseen data.

How do we measure this? True error

To do this, we need to understand uncertainty in the world

True Error

17

Sq. Ft. Price | Sq. Ft.

Model
Assessment

How can we figure out how well a model will do on future data if
we don’t have any future data?

▪ Estimate it! We can hide data from the model to test it later as
an estimate how it will do on future data

We will randomly split our dataset into a train set and a test set

▪ The train set is to train the model

▪ The test set is to estimate the performance in the future

18

Test Error What we really care about is the true error, or how well a model
perform on unseen data in the wild, but we can’t know that
without having an infinite amount of data!

We will use the test set to estimate the true error.

Note: The train and test set need to be randomly split in order for
the test set to be truly reflective of data in the real world.

Call the error on the test set the test error for a model መ𝑓:

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 =
1

𝑛
෍

𝑖∈𝑇𝑒𝑠𝑡

𝑦(𝑖) − መ𝑓 𝑥(𝑖)
2

If the test set is large enough, this can approximate the true error.
19

Train/Test Split If we use the test set to estimate future, how big should it be?

This comes at a cost of reducing the size of the training set
though (in the absence of being able to just get more data)

In practice people generally do train:test as either

▪ 80:20

▪ 90:10

Important: Never train your model on data in the test set!
20

CSE/STAT 416
Assessing Performance

Hunter Schafer
University of Washington
March 29, 2022

❓ Questions? Raise hand or sli.do #cs416
💬 Before Class: Did you get to do anything fun during the
(short) spring break?
🎵 Listening to: grentperez

https://open.spotify.com/artist/73BLwSX6gsNeVzS7DgI4xe?si=OccyY7oqRMCxyiJa3_ptVA

Logistics ▪ Check EdStem for announcements and clarifications

▪ Section tomorrow will focus on writing code for HW1

▪ Module 0 assignments out!
- Learning Reflection due Friday
- HW1 released and due Tuesday night

22

Regression
Recap

23

Linear
Regression
Model

Assume we have a simple model with one feature, where we establish
a linear relationship between the area of a house 𝑖 and its price:

𝑦𝑖 = 𝑤0+𝑤1𝑥𝑖 + 𝜖𝑖

𝑤0, 𝑤1are the parameters of our model that need to be learned

▪ 𝑤0 is the intercept / bias, representing the starting price of a house

▪ 𝑤1 is the slope / weight associated with feature ”area of a house”

Learn estimates of these
parameters ෝ𝑤1 , ෝ𝑤0 and use
them to predict new value
for any input 𝑥!

ො𝑦 = ෝ𝑤1𝑥 + ෝ𝑤0

Why don’t we add 𝜖?
24Area of a house

Price

𝑦

𝑥

25

ML Pipeline

25

Training
Data

Pre-
Processing

ML
model

Quality
metric

Optimization
algorithm

y

x ŷ

⌃f- Historical Bias

- Representation

Bias

- Measurement Bias

- Deployment Bias

Gradient
Descent

Instead of computing all possible points to find the minimum,
just start at one point and “roll” down the hill. Use the gradient
(slope) to determine which direction is down.

26

Start at some (random) weights 𝑤
While we haven’t converged:

𝑤(𝑡+1) = 𝑤(𝑡) − 𝛼𝛻𝐿(𝑤)

- 𝛼: learning rate

- - 𝛻𝐿(𝑤): the gradients of loss function 𝐿 on a set of

weights 𝑤

Pre-Class 1
Recap:
Features

You can use anything you want as features and include as many
of them as you want!

Generally, more features means a more complex model. This
might not always be a good thing!

Choosing good features is a bit of an art.

27

Feature Value Parameter

0 1 (constant) 𝑤0

1 ℎ1 𝑥 … 𝑥 1 = sq. ft. 𝑤1

2 ℎ2(𝑥) … 𝑥 2 = # bath 𝑤2

… … …

D ℎ𝐷(𝑥) … like log 𝑥 7 ∗ 𝑥[2] 𝑤D

Linear
Regression
Recap

Dataset

𝑥𝑖, 𝑦𝑖 𝑖=1
𝑛 where 𝑥 ∈ ℝ𝑑, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑥 : ℝ𝑑 → ℝ𝐷

ℎ 𝑥 = ℎ0 𝑥 , ℎ1 𝑥 ,… , ℎ𝐷(𝑥)

Regression Model
𝑦 = 𝑓 𝑥 + 𝜖

= ෍
𝑗=0

𝐷

𝑤𝑗ℎ𝑗 𝑥 + 𝜖

= 𝑤𝑇ℎ 𝑥 + 𝜖

Quality Metric

𝑀𝑆𝐸 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 −𝑤𝑇𝑥𝑖
2

Predictor
ෝ𝑤 = argmin

𝑤
𝑀𝑆𝐸(𝑤)

ML Algorithm

Optimized using Gradient Descent

Prediction
ො𝑦 = ෝ𝑤𝑇ℎ(𝑥)

28

Term recap
▪ Supervised learning: The machine learning task of learning a function

that maps an input to an output based on example input-output pairs.

▪ Regression: A supervised learning task where the outputs are
continuous values.

▪ Feature:
- An attribute that we’re selecting for our model
- Can come from the original dataset, or through some

transformations (feature extraction)

▪ Parameter: The weight or bias associated with a feature. The goal of
machine learning is to adjust the weights to optimize the loss
functions on training data.

▪ Loss function: A function that computes the distance between the
predicted output from a machine learning model and the actual output.

▪ Machine learning model: An algorithm that combs through an amount
of data to find patterns, make predictions, or generate insights

▪ Optimization algorithm: An algorithm used to minimize the loss
during training. The most common one is Gradient Descent.

29

Pre-Class 2
Recap:
Model
Evaluation

▪ Low training error != a good model

▪ To avoid memorizing, need to test on data we didn’t train on

▪ Training set to train on and a test set for evaluation
- Test set is a stand-in for all future data

30

sli.do #cs416

Think

▪ Goal: Get you actively participating in your learning

▪ Typical Activity
- Question is posed
- Think (1 min): Think about the question on your own
- Pair (2 min): Talk with your neighbor to discuss question

- If you arrive at different conclusions, discuss your
logic and figure out why you differ!

- If you arrived at the same conclusion, discuss why
the other answers might be wrong!

- Share (1 min): We discuss the conclusions as a class

▪ During each of the Think and Pair stages, you will respond to
the question via a sli.do poll

- Not worth any points, just here to help you learn!

31

1 min

sli.do #cs416

Think

Which of the models do you expect to have the:

▪ Highest Train Error

▪ Highest Test Error

▪ Lowest Train Error

▪ Lowest Test Error

32

1 minute

sli.do #cs416

Group

33

2 minute

Which of the models do you expect to have the:

▪ Highest Train Error

▪ Highest Test Error

▪ Lowest Train Error

▪ Lowest Test Error

Model
Complexity

34

Model
Complexity

▪ There is not a well-defined way to measure the complexity of a
model. It depends on the nature of the models.

▪ We usually associate it with the number of parameters. A model
with more parameters is usually more complex.

▪ Example with polynomial regression:
- Model 1: (2 parameters)

- 𝑦 = 𝑤0 + 𝑤1𝑥
- Model 2: (4 parameters)

- 𝑦 = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 + 𝑤3𝑥

3

We say that model 2 is more complex than model 1.

35

Training
Error

What happens to training error as we increase model complexity?

▪ Start with the simplest model (a constant function)

▪ End with a very high degree polynomial

36

True Error What happens to true error as we increase model complexity?

▪ Start with the simplest model (a constant function)

▪ End with a very high degree polynomial

37

Train/True
Error

Compare what happens to train and true error as a function of
model complexity

38

Error

Complexity

Train error

True error

Overfitting
Overfitting happens when we too closely match the training data
and fail to generalize.

Overfitting occurs when you train a predictor ෝ𝑤 but there exists
another predictor 𝑤′ from the same model class such that:

▪ 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒 𝑤′ < 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ෝ𝑤)

▪ 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛 𝑤′ > 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ෝ𝑤)

39

Error

Complexity

sli.do #cs416

Think

Consider the learning task of predicting the price of a house based
on its features. Evaluate the statement: “To make the model
more accurate, we should include as many features as possible
(e.g., square footage, # bathrooms, location, etc.).

▪ True

▪ False

▪ Unsure

40

1 min

sli.do #cs416

Group

Consider the learning task of predicting the price of a house based
on its features. Evaluate the statement: “To make the model
more accurate, we should include as many features as possible
(e.g., square footage, # bathrooms, location, etc.).

▪ True

▪ False

▪ Unsure

41

1 min

Brain BreakBrain Break

42

Bias-Variance
Tradeoff

43

Underfitting /
Overfitting

The ability to overfit/underfit is a knob we can turn based on the
model complexity.

▪ More complex => easier to overfit

▪ Less complex => easier to underfit

In a bit, we will talk about how to chose the “just right”, but now
we want to look at this phenomena of overfitting/underfitting
from another perspective.

44Underfitting Optimal Overfitting

Signal
vs.
Noise

Learning from data relies on
balancing two aspects of our
data

▪ Signal

▪ Noise

Complex models make it
easier to fit too closely to the
noise

Simple models have trouble
picking up the signal

45

Source of
errors
in a model

Total errors for a machine learning model comes from 3 types:

▪ Bias

▪ Variance

▪ Irreducible Error

Irreducible error is the one that we can’t avoid or possibly
eliminate. They are caused by elements outside of our control,
such as noise from observations.

46

Bias A model that is too simple fails to fit the signal. In some sense,
this signifies a fundamental limitation of the model we are using
to fail to fit the signal. We call this type of error bias.

Bias is the difference between the average prediction of our
model and the expected value which we are trying to predict.

Low complexity (simple) models tend to have high bias.
47

Variance A model that is too complicated for the task overly fits to small
fluctuations. The flexibility of the complicated model makes it capable
of memorizing answers rather than learning general patterns. This
contributes to the error as variance.

Variance is the variability in the model prediction, meaning how much
the predictions will change if a different training dataset is used.

High complexity models tend to have high variance. 48

Bias-Variance
Tradeoff

Tradeoff between bias and variance:

▪ Simple models: High bias + Low variance

▪ Complex models: Low bias + High variance

Source of errors for a particular model መ𝑓 using MSE loss function:

Error = Biased squared + Variance + Irreducible Error

49

Bias-Variance
Tradeoff

Visually, this looks like the following!
𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑖𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

50
Complexity

Error

Bias –
Variance
Tradeoff

51
Complexity

Error

Biased squared

Variance

True error

Underfitting

Optimal model
complexity

Overfitting

Dataset Size So far our entire discussion of error assumes a fixed amount of
data. What happens to our error (true error and training error) as
we get more data?

52
Size of train set

Error

Dataset Size ▪ Model complexity doesn’t depend on the size of the training set

▪ The larger the training set, the lower the variance of the model,
thus less overfitting

53

Demo Bias-Variance Tradeoff

▪ Training a linear regression model in Python

▪ Observing the effect of the bias-variance tradeoff as
compared to model complexity

54

Brain BreakBrain Break

55

Choosing
Complexity

56

Choosing
Complexity

So far we have talked about the affect of using different
complexities on our error. Now, how do we choose the right one?

57

sli.do #cs416

Think

Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

▪ Train a model with degree p on the training set, pick p that
has the lowest test error

▪ Train a model with degree p on the training set, pick p that
has the highest test error

▪ Train a model with degree p on the test set, pick p that has
the lowest test error

▪ Train a model with degree p on the test set, pick p that has
the highest test error

▪ None of the above

58

1 min

sli.do #cs416

Group

Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

▪ Train a model with degree p on the training set, pick p that
has the lowest test error

▪ Train a model with degree p on the training set, pick p that
has the highest test error

▪ Train a model with degree p on the test set, pick p that has
the lowest test error

▪ Train a model with degree p on the test set, pick p that has
the highest test error

▪ None of the above

59

2 min

Choosing
Complexity

We can’t just choose the model that has the lowest train error because
that will favor models that overfit!

It then seems like our only other choice is to choose the model that has
the lowest test error (since that is our approximation of the true error)

▪ This is almost right. However, the test set has been tampered, thus
is no longer is an unbiased estimate of the true error.

▪ We didn’t technically train the model on the test set (that’s good),
but we chose which model to use based on the performance of the
test set.

- It’s no longer a stand in for “the unknown” since we probed it
many times to figure out which model would be best.

NEVER EVER EVER touch the test set until the end. You only use it ONCE
to evaluate the performance of the best model you have selected during
training.

60

Choosing
Complexity

We will talk about two ways to pick the model complexity
without ruining our test set.

▪ Using a validation set

▪ Doing (k-fold) cross validation

61

Validation Set So far we have divided our dataset into train and test

We can’t use Test to choose our model complexity, so instead,
break up Train into ANOTHER dataset

We will pick the model that does best on validation. Note that
this now makes the validation error of the “best” model a biased
estimate of true error. The test error will be an unbiased estimate
though since we never looked at it!

62

Train Test

Train Validation Test

Validation Set The process generally goes

train, validation, test = random_split(dataset)

for each model complexity p:

model = train_model(model_p, train)

val_err = error(model, validation)

keep track of p and model with smallest val_err

return best p & error(model, test)

63

Validation Set Pros

Easy to describe and implement

Pretty fast

- Only requires training a model and predicting on the
validation set for each complexity of interest

Cons

- Have to sacrifice even more training data

- Prone to overfitting*

64

Cross-Validation Clever idea: Use many small validation sets without losing too
much training data.

Still need to break off our test set like before. After doing so,
break the training set into 𝑘 chunks.

For a given model complexity, train it 𝑘 times. Each time use all
but one chunk and use that left out chunk to determine the
validation error.

65

Train Test

Chunk1 Chunk2 Chunk3 Chunk4 Test

Cross
Validation

66

Validation Training

Error 1

Error 2

Error 3

Error k

Average
all validation

errors

For a set of hyperparameters, perform Cross Validation on k folds

.

.

. . .

. . .

. . .

. . .

k folds

Cross-Validation The process generally goes

chunk_1, …, chunk_k, test = random_split(dataset)

for each model complexity p:

for i in [1, k]:

model = train_model(model_p, chunks - i)

val_err = error(model, chunk_i)

avg_val_err = average val_err over chunks

keep track of p with smallest avg_val_err

return model trained on train (all chunks) with

best p & error(model, test)

67

Cross-Validation Pros

- Prevent overfitting: By training the model on multiple folds instead of
only 1 training set, this learns the model with the best generalization
capabilities.

- Don’t have to actually get rid of any training data!

Cons

- Slow. For each model selection, we have to train 𝑘 times

- Very computationally expensive

68

Cross-Validation Generally, the more folds you use the better as you aren’t relying on the
specifics of a single validation fold.

▪ Theoretical best estimator* is to use 𝑘 = 𝑛

- Called "Leave One Out Cross Validation” (LOOCV)

▪ In practice, people use 𝑘 = 5 to 10 for computational simplicity

69

Recap Theme: Assess the performance of our models

Ideas:

▪ Model complexity

▪ Train vs. Test vs. True error

▪ Overfitting and Underfitting

▪ Bias-Variance Tradeoff

▪ Error as a function of train set size

▪ Choosing best model complexity
- Validation set
- Cross Validation

70

