
Chapter 17

Neural Networks & Deep Learning

17.1 What is Deep Learning?

When people talk about deep learning they are generally talking about a class of models called neural
networks that are a loose approximation of how our brains work. Although deep learning has had a lot
recent activity in the news, these types of models are not “new” as they have been used for around 50 years.
Previously though, they fell in disfavor when simpler models, like the ones that we have already learned in
this class, were already performing quite well. Recently, there has been a huge resurgence mainly due to
the impressive accuracy these types of models could achieve on benchmark problems. In addition, with the
increased amount of data and compute resources (GPUs for example) currently available, training neural
networks for complex and large problems has become feasible.

Figure 17.86: Graphical Representation of a Neural Network

17.2 One Unit of a Neural Network

Definition 17.1: Perceptron

A perceptron is a single layer neural network that consists of input values also known as the input
layer, weights, biases, a summation, and finally an activation function. Perceptron used together in
multiple layers are called neural networks.

Essentially, a perceptron is a graphical representation of a simple linear classifier. To review, a linear classifier
has vector of weights and a bias.

Note that sometimes the bias term is written as part of the weights as w0 but can also be represented using
b for bias. The bias is often referred to as the y intercept in 2D space. This is purely notation and there is
no di↵erence in meaning between b and w0 in this context.

We can more formally define a linear classifier’s score as follows:

17-94



[DRAFT: Content subject to change] 17.17 Introduction to Machine Learning (Non-Majors) 17-95

Score(x) =
dX

j=1

wjx[j] = w0 + w1x[1] + wqx[2] + ...+ wdx[d] (17.48)

This is simply a linear equation which no di↵erent than the equation used in a linear regression. This “score”,
a weighted sum, can be turned into a classifier by using an activation function. For example, we could use
the sign function that outputs 1 if the score is greater than 0 and 0 otherwise. We can see this represented
below:

w 0 
+ 

w
1

x[
1]

 +
 w

2
x[

2]
 +

 …
 +

 w
d

x[
d]

= 
0Score(x) > 0 Score(x) < 0

Score(x) = w0 + w1 x[1] + w2 x[2] + … + wd x[d]

Figure 17.87: Linear Classifier

Definition 17.2: Activation Function

An activation function is a function that defines the output of a neuron from the score/output
of a weighted sum. There are many di↵erent types of activation functions that can help a neural
network’s training and performance.

In practice, the sign function is usually not used as for two main reasons: it is not di↵erentiable and it has
no notion of confidence in its output. As the sign function only maps to 0 or 1 it is non-di↵erentiable. Then
for most classification outputs it would be ideal to have a measure of certainty. It is useful for both training
and using a model to know if it has made a sure decision or is uncertain. For those reasons we usually look
for activation functions which don’t compromise on both of these. However, note that choice of an activation
function is highly dependent on its use case. Below are listed a few commonly used activation functions in
neural networks:

• Sigmoid. There are many di↵erent types of sigmoid functions. One for instance is the logistic
function as shown above. This was historically extremely popular but has since been used less because
the neuron’s activation saturates, meaning the weights become increasingly large as the gradient gets
smaller. In addition, it is not 0 centered, which can create issues in the gradient steps. Note that when
this is applied on the output layer of a neural network this is called softmax as it can be interpreted
as a class probability (a soft assignment).

g(x) =
1

1 + e�Score(x)
(17.49)

• Hyperbolic Tangent. This is also considered a sigmoid function and saturates similarily but has the
benefit of being centered at 0.

g(x) = tanh(x) (17.50)



17-96 Introduction to Machine Learning (Non-Majors) 17.17 [DRAFT: Content subject to change]]

• Rectified Linear Unit (ReLU). This is the most popular activation function uses in neural networks
as it is easy to implement, fast to compute, and has a true 0 value. However, neurons can “die o↵” as
their outputs are 0. Note that there are variants of this which are “leaky” and “noisy” which can be
beneficial depending on the use case.

g(x) = max {x, 0} (17.51)

• Softplus. Softplus is a smooth approximation of ReLU.

g(x) = log(1 + exp(x)) (17.52)

The two components of a linear weighted sum and an activation function make up what we call a single
neuron. Then combined with the input layer with a single neuron into the linear model we get a perceptron.

x[1]

x[2]

x[d]

Σ…

1 w
0

w1

w2

wd

Figure 17.88: A perceptron.

17.3 Perceptron Learning

As we have learned, a perceptron is essential a linear model. We will take a look at two functions that a
perception can learn. A perceptron can find weights which can solve these two problems with the 3 trained
weights (bias, x1 and x2) and the sign activation function.

• The OR Function.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

Here is one solution: w0 = �0.5, w1 = 1, and w2 = 1.

To solve this we simply find the weighted sum:

sign(
dX

j=1

wjx[j]) = sign(w0 + w1 ⇤ x1 + w2 ⇤ x2) (17.53)

Then let’s check if this works for the second row of the table above using x1 = 0 and x2 = 1:

sign(�0.5 + 1 ⇤ 0 + 1 ⇤ 1) = sign(0.5) = 1 (17.54)

The rest of these are also valid and can be checked if you wish. Clearly there are multiple solutions to
this problem as there are only 4 data points to fit here but this is one that separates the data correctly.



[DRAFT: Content subject to change] 17.17 Introduction to Machine Learning (Non-Majors) 17-97

• The AND Function.

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Here is one solution: w0 = �1.5, w1 = 1, and w2 = 1. Again, similar to the previous problem there
are multiple solutions.

However, as you likely have predicted, a single perception has its limitations in that it can only fit linear
classification problems. For instance, a single perceptron cannot fit to the XOR function because it is not
linearly separable:

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

In order to create a neural network complex enough for nonlinear problems we need to combine multiple
perceptrons in layers.

Figure 17.89: Perceptrons in Layers (a Neural Network)

Definition 17.3: Hidden Layer

A hidden layer is any layer in a neural network that is between the input and output layers where
the neuron takes weighted inputs and produces an output using an activation function.

Let’s design a two layer (one hidden layer) neural network that can fit the XOR function. We will start by
breaking down the XOR function:

x1 XOR x2 = (x1 AND !x2) OR (!x1 AND x2) (17.55)

Using this we can design a neural network to fit XOR. We will use the first half of the OR statement as the
first layer and the second half as the second layer. We can also refer to the first layer as the input layer
and the second layer as the hidden layer.

We will define v1 = (x1 AND !x2) and v2 = (!x1 AND x2). We can now create a neural network which in
the second layer uses the same OR perceptron we fit earlier. Then we define the first layer’s weights to apply



17-98 Introduction to Machine Learning (Non-Majors) 17.17 [DRAFT: Content subject to change]]

the correct AND for both v1 and v2. We are also still using the sign activation function for all neurons.
Combined together we have a valid XOR fit neural network.

v[1]

-0.5

1

-1
v[2]

-0.5

-1

1

x[1]

x[2]

1

y

1 -0.5

1

1

Figure 17.90: Two Layer XOR Solution

We have now defined our first two layer (one hidden layer) neural network. Keep in mind normally this
neural network will be trained using data instead of assigned like above. Training a neural network will be
discussed below.

We will now try the neural network’s prediction by running a forward pass using the sample input x1 = 1
and x2 = 0.

Following the model as node v1 we get �0.5+1 ⇤ 1+�1 ⇤ 0 = 0.5 which is positive so node v1 = 1. For node
v2 we get �0.5 + �1 ⇤ 1 + 1 ⇤ 0 = �1.5 which is negative so we v2 = 0. In the hidden layer we sum to get
b+ v1 ⇤ 1+ v2 ⇤ 1 = �0.5+ 1 ⇤ 1+ 0 ⇤ 1 = 0.5 which again is positive so the output is 1 which matches XOR.

Surprisingly any two layer neural network can represent any function if enough nodes are allowed in the
hidden layer. Although this is ideal in that we can fit complex functions well it has the consequence that
neural networks are likely to overfit however there are some methods to try to avoid overfitting similar to
other models. Having lots of training data is important along with regularization and/or dropout. Also,
keeping the network shallower and with fewer nodes can help to avoid overfitting, going deeper only helps if
you are very careful.

17.4 Applications

17.4.1 Regression or Classification?

We have showed that using a binary final output function (0 or 1) in neural network can be used for
classification tasks like AND, OR, and XOR. For more complex classification tasks, like previously stated,
we can use softmax to transform scores from the neural network into a probability output. This can be used
in a variety of settings, such as in computer vision.

For instance, let us decide that we wish to classify images into one of 5 di↵erent classes with our newfound
understanding of neural networks. We should design our neural network to have 5 output nodes corresponding
to the 5 di↵erent classes. Then when using the softmax activation function on the output scores we can turn
those 5 scores into 5 probabilities. Then as in this scenario we wish to just decide one classification, we can
choose the class with the highest probability and assign the image to some class that way.

Example(s)

One example of where classification is used in neural networks is for the MNIST dataset. These are
hand-written digit images that are labelled with the correct value. In a neural network design for



[DRAFT: Content subject to change] 17.17 Introduction to Machine Learning (Non-Majors) 17-99

this there will be 10 nodes in the output layer corresponding to the probability of some image (the
input) being classified as some digit (0-9). That means that number of classes should be equal to the
number of outputs.

Neural networks are not limited to classification tasks though. For instance, in a regression task for a neural
net, they will have one output node as the single number prediction.

17.4.2 Learning Features

As we have learned through using LASSO, it can be immensely helpful to decide which features are important
to take use. Sometimes we don’t know if the best features are even from the set of the current ones or if
it would be better to use combinations of multiple of them. This is a key feature of neural networks that
makes complex tasks much easier.

Previously, computer vision methods used hand crafted features to make decisions about images. For ex-
ample, if trying to classify images of people it might look for the face, nose, mouth, etc. These are major
generalizations though and not very easy to simply plug an image in and know these features directly. In
addition this relies on coming up with these hand picked features which often we might not know what will
be the best indicators for complex classification problems

Input Use simple classifier
e.g., logistic regression, SVMs

Face?

Extract features

Hand-created 
features

Figure 17.91: Manual Feature Selection in Computer Vision

Using neural networks fixes this problem. We can directly input images as multi-dimension arrays (you will
see how to do this in the next chapter) and the neural network can learn features across the multiple layers
of the network. Each layer will learn subsequently more complex features starting from the pixel level as the
input to understanding features in later layers that we might have hand picked or more likely features that
we might not understand, but help to make an accurate classifier.



17-100 Introduction to Machine Learning (Non-Majors) 17.17 [DRAFT: Content subject to change]]

Layer 1 Layer 2 Layer 3 Prediction

Example 
detectors 
learned

Example 
interest points 
detected

[Zeiler & Fergus ‘13]

Figure 17.92: Manual Feature Selection in Computer Vision

17.5 Training

Now that we understand the basics of what make of neural networks are, what they can learn, and what
they can be used for we should learn about how to actually train one of these models. The first step, similar
to the other models we have learned, is that we must define a cost function.

• For regression tasks, typically the residual sum of squares (RSS) or Root Mean Square Error (RMSE)
is used

• For classification, typically Cross Entropy loss is used.

With a cost function defined, we can train a neural network, similar to other models, using gradient descent
in three main steps:

1. Do a forward pass of the data through the network to get predictions.

2. Compare predictions to true values using the cost function.

3. Backpropagate errors by pushing the calculation of the gradient through the back of the network so
the weights make better predictions.

To train neural networks well, usually there is a large amount of data. To speed training up instead of
following the three steps from above for the entire dataset at once, the data is broken up in to batches.
Generally, going through the entire data set once is not enough to train the network so multiple passes
through the same data is required. We call an iteration that goes over every batch (the entire training set)
once an epoch.

Here is how the training of the neural network would look like in code across a set number of epochs and
batches:



[DRAFT: Content subject to change] 17.17 Introduction to Machine Learning (Non-Majors) 17-101

Figure 17.93: Training a Neural Network

One major challenge of training neural networks is that there are many hyperparameters. We must consider
at least the shape of the network (how many hidden layers and hidden neurons), the activation functions,
the learning rate for gradient descent, the batch size, and the number of epochs. Unfortunately, there is no
best solution to determining these values and often is lots of trial and error. Grid search and random search
can be useful and Bayesian Optimization can also help with this.

In general, loss functions with neural networks are not convex meaning that the backpropagation algorithm
for gradient descent will only converge to a local optima. Similar to k-means the initialization is important
and could a↵ect the final result. However, there is not one known way and usually random initialization is
used. The same applies for the learning rate if the step sizes are too large when running gradient descent.

There is still ongoing research about understanding neural networks and why they work so well on certain
problems, the best ways to train, and the caveats of using them. It is important to know that while neural
networks are useful for fitting complex problems, they are not the one and done solution as they are often
quick to overfit and overly complex for many tasks.


	1. Introduction / Regression
	2. Assessing Performance; Bias + Variance Tradeoff
	3. Cross Validation / Regularization
	4. Feature Selection + LASSO
	5. Classification
	6. Logistic Regression
	7. Naive Bayes and Decision Trees
	8. Ensemble Methods
	10. Fairness in ML
	11. Clustering
	12. More Clustering Methods
	13. Dimensionality Reduction / PCA
	14. Recommender Systems
	15. Nearest Neighbors / Distance Metrics
	16. Kernel Methods and Locality Sensitive Hashing
	17. Neural Networks
	18. Convolutional Neural Networks

