CSE/STAT 416

Neural Networks

Amal Nanavati
University of Washington
July 25, 2022

Adapted from Hunter Schafer’s slides

Housing Prices - Regression
Regression Model
Assessing Performance
Ridge Regression
LASSO

Sentiment Analysis — Classification
Classification Overview
Logistic Regression
K-Nearest Neighbors
Decision Trees
Ensemble Methods

Neural Networks — Image Classification
Neural Networks
Convolutional Neural Networks

Administrivia

Timeline:
This is the last week (mostly) on supervised learning
This Week: Neural Networks, Deep Learning
Next Week: Clustering
Following Week: Dimensionality Reduction, Recommender
Systems
Then: Course Recap & Final

Deadlines:
HW4 deadline tomorrow, 7/26 11:59PM
Up to 7/28 11:59PM with two late days
NOTE: Change "dummy_model’ when copy-pasting
the code to generate the CSV!
HWS5 released Wed 7/27, due Tues 8/2
Learning Reflection 6 due Fri, 7/29 11:59PM

Addressing
LR
Uncertainties

Missing Data:

Idea 1: Remove rows (datapoints) with missing values.

ldea 1 Credit

Train Set Test Set
Term | Income Loan Credit | Term | Income | Prediction
Safety
fair 5yrs | $100K Safe excellent | 3yrs | $100K
excellent | 3 yrs Risky fair 5yrs | $20K
poor 5yrs | $75K Risky poor 3yrs

Missing Data:

Idea 2: Remove columns (features) with missing values.

ldea 2 Credit

Train Set Test Set
Term | Income Loan Credit | Term | Income | Prediction
Safety
fair 5yrs | $100K Safe excellent | 3yrs | $100K
excellent | 3 yrs Risky fair 5yrs | $20K
poor 5yrs | $75K Risky poor 3yrs

Missing Data:

Idea 3: Treat missing values as a separate value of the feature (only
Decision Trees)

ldea 3 Credit

Train Set Test Set
Term | Income Loan Credit | Term | Income | Prediction
Safety
fair 5yrs | $100K Safe excellent | 3yrs | $100K
excellent | 3 yrs Risky fair 5yrs | $20K
poor 5yrs | $75K Risky poor 3yrs

Missing Data:

Idea 4: Replace missing values with a reasonable statistic (Imputation)

ldea 4 Credit

Train Set Test Set
Term | Income Loan Credit | Term | Income | Prediction
Safety
fair 5yrs | $100K Safe excellent | 3yrs | $100K
excellent | 3 yrs Risky fair 5yrs | $20K
poor 5yrs | $75K Risky poor 3yrs

(Most
Commonly

Used!)

Combining
Decision
Boundaries

sign |.

+ .65

+ .92

What Model Should
You Use?

. Depends on your
goal and your data ©

= Try different models (in
an informed fashion)

10

Introduction
to Neural
Networks

11

Deep
Learning

A lot of the buzz about ML recently has come from recent
advancements in deep learning.

When people talk about “deep learning” they are generally
talking about a class of models called neural networks that are a
loose approximation of how our brains work.

History of
Neural
Networks

Generally layers and layers of linear models and non-linearities
(activation functions). N

Have been around for about 50 years

Fell in “disfavor” in the 90s when simpler models were doing
well

In the last few years, have had a huge resurgence
Impressive accuracy on several benchmark problems

Have risen in popularity due to huge datasets, GPUs, and
improvements to

Convolutional Neural Networks (CNNs) are commonly used in
Computer Vision. We'll learn about these on Wed!

P O p U l'a r Input data Convl Conv2 Conv3 Conv4 Conv5s FC6 FC7 FC8

Neural
Network
Architectures:

13x 13 x 384 13x 13 x 384 13x 13 X 256

CNNs

27x 27 X 256

55x 55 X 96 L]
1000

227% 227 x 3 4096 4096

Popular
Neural
Network

Architectures:
RNNs

Recurrent Neural Networks(RNNs) are commonly used in
Natural Language Processing, where the model must
remember context from earlier in the text.

i Recueenst
Ceal

Previous Message How are
Mean Embedding | J J
. Y

Subject Line —
Mean Embedding

POpU lar Train two networks together:
Generator Network: generate fake images
Discriminator Network: given a real image and a fake

Neural

NetWO rk image, determine which is fake
Architectures:

GANs

Generative adversarial networks (conceptual)

‘ Rea T}

ﬁ Realworld ——f sample
jages | Real
Discriminator
Discriminator
‘) va*" I
E Generator |[—— Sample
Generator

Fake

Latent random variable

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

17

Biological

Inspiration

(Artificial
Neural = Neuronal Action Potential

Axon Hillock /\/\
Networks vs. .dy /\ r\ f\ > /\
Q

Biological Cﬁ
Neural S
@

Networks) s _ .onm

Lineage©

Neural
Networks:
Technical
Details

19

Remember the linear classifier based on score

Recall:
Linear
Classifier
Score(x) = wy+ wy x[1] + w, x[2] + ... + wy x[d]
V
Score(x) >0 o[Score(x) <0
+ + 3 -
+ 7 =
+ & N é _ -
£ =
+ g
+ 4 . 3 =
d

Graphical representation of this same classifier

Perceptron

Input Output

d
g(Score(x)) _ 1, lf ;WJX[]] >0

0, otherwise

This is called a perceptron

@ Poll Everywhere

Think &

2 mins

pollev.com/cs416

Match the perceptrons below to the functions they compute.

Function,

X1 X2 y
0 0 0
0 1 1
1 0 1
1 1 1

Functiong

X1 X2 y
0 0 0
0 1 0
1 0 0
1 1 1

@ Poll Everywhere

Group 252

2 mins

pollev.com/cs416

Match the perceptrons below to the functions they compute.

Function,

X1 X2 y
0 0 0
0 1 1
1 0 1
1 1 1

Functiong

X1 X2 y
0 0 0
0 1 0
1 0 0
1 1 1

Function,

Functiong
X2

X1

The perceptron can learn most boolean functions, but XOR
always has to ruin the fun.

This data is not linearly separable, therefore can’t be learned

X2

with the perceptron
AR
RN O

== O | O

el =l E=EA

0
1
0
1

Multi-Layer Idea: Combine these perceptrons in layers to learn more complex
Perceptron
(Neural
Network)

functions.

Neural Since the inputs are the same, typically we combine them in
the diagram, with multiple arrows coming out.
Network J P J

. We don't explicitly show the sum and activation function —
Diagram B
that is implicitly a part of each node.

Simplified

NEUIE]
Network
Diagram
Simplified
Further

Oftentimes, the bias is not explicitly shown as another input,
and instead written on top of a node.

You will see both types of diagrams in this course.

Notice that we can represent
x[1] XOR x[2] = (x[1] AND 'x[2]) OR (! x[1] AND x[2])

This is a 2-layer neural network

y = x[1] XOR x[2] = (x[1] AND ! x[2]) OR (! x[1] AND x[2])

v[1] = (x[1] AND !x[2])
= g(—0.5+ x[1] — x[2])

v[2] = (! x[1] AND x[2])
= g(—0.5 — x[1] + x[2])

v[1] OR v[2]
g(—0.5+ v[1] +v[2])

y

Neural Two layer neural network (alt. one hidden-layer neural network)
N etWO rk Inputs Outputs

LR RN
TEN DO

)

Single

out(x) =g (WO + Z wjx[]']>
J

1-hidden layer

=3 s+ Toma w2+ T
k J

Power of 2- A surprising fact is that a 2-layer network can represent any
function, if we allow enough nodes in hidden layer.
layer NN J Y

For this example, consider regression function with one input.

See more here:
http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

@ Poll Everywhere

Compute the output for input (O, 1). There is a sign activation
function on the hidden layers and output layer.

Think &

2 mins

@ Poll Everywhere

Compute the output for input (0, 1). There is a sign activation

8 g function on the hidden layers and output layer.

Group &7

2 mins

Activation
Function

Before, we were using the sign activation function.

This is not generally used in practice.
Not differentiable
No notion of confidence

What if we use the logistic function instead?

_ 1
g(wp + ; wix[j]) = 1 + e~ (wot 3, w;x[i])

Z 0 9 1+ e SCOre(x)

Activation
Functions

-Sigmoid 1
-Historically popular, but (mostly) fallen out of favor
0 4

‘Neuron’s activation saturates

(weights get very large -> gradients get small)
*Not zero-centered -> other issues in the gradient steps _4
-When put on the output layer, called “softmax” because -1 0 1
interpreted as class probability (soft assignment)

sigmoid

‘Hyperbolic tangent g(x) = tanh(x)
-Saturates like sigmoid unit, but zero-centered

Rectified linear unit (ReLU) g(x) = x+ = max(0,x)
-Most popular choice these days

-Fragile during training and neurons can “die off”...
be careful about learning rates

-"Noisy” or “leaky” variants

Softplus g(x) = log(1+exp(x))
-Smooth approximation to rectifier activation

Classification
or
Regression

You can use neural networks for classification and regression!

Regression

The output layer will generally have one node that is the output
(outputs a single number). Don’t apply activation to the last layer.

Classification

The output layer will have one node per class. Usually take the
node with the highest score as the prediction for an example. Can
also use the logistic function (softmax) to turn scores into
probabilities!

Overfitti ng Are NN likely to overfit? YES.
NNs Consequence of being able to fit any function!

How to avoid overfitting?
Get more training data

Few hidden nodes / better architecture
Rule of thumb: 3-layer NNs outperform 2-layer NNs,
but going deeper only helps if you are very careful
(different story next time with convolutional neural
networks)

Regularization
Dropout

Early stopping

@ Poll Everywhere

The models we have seen so far have < 100 parameters (weights,
biases). How many parameters do you think GPT-3 has?

Think &

_ (a) 0.4B (b) 1B (c)12B (d)90B (e) 175B
1 min

pollev.com/cs416 https://beta.openai.com/playground

Playground

How should I teach an introduction to neural networks?

There is no one answer to this question. Depending on the level of the students and the resources available, the approach to teaching neural networks will vary. A few potential ideas include:
-Starting with a basic introduction to artificial neural networks and how they work

-Progressing to more specific types of neural networks, such as convolutional neural networks

-Using hands-on activities or projects to help students understand how neural networks work

-Providing resources for students to explore on their own outside of class|

https://beta.openai.com/playground

Application
to Computer
Vision

41

|mage Features in computer vision are local detectors

Featu res Combine features to make prediction

In reality, these features are much more low level (e.g. Corner?)

The Pa St A popular approach to computer vision was to make hand-crafted
features for object detection

Input Extract features Use simple classifier

e.g., logistic regression, SVMs

Hand-created
features

Relies on coming up with these features by hand (yuck!)

N N s to the Neural Networks implicitly find these low level features for us!
Rescue

. Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]

Each layer learns more and more complex features

¢ craiyon
Th e m Od e l.S We h ave Al model drawing images from any prompt!

seen so far have
0 Poll Everywhere < 100 parameters
(weights, biases).

Th|nk 8 How many

parameters do you

think DALL-E Mini

1 min has?
o A O
O % Q o @ @ D
. pollev.com/cs416 g
D T \

{ } e '8 https://www.craiyon.com/
= ‘o ZNSRR (formerly Dall-E Mini)
O
)

A

https://www.craiyon.com/

Training
Neural
Networks

46

Learning
Coefficients

So the idea of neural networks might make sense, but how do we
actually go about learning the coefficients in the layers?

First we need to define a quality metric or cost function
For regression, generally use MSE or RMSE

For classification, generally use something call the Cross
Entropy loss.

Can we use gradient descent here? Actually yes!
How do we take the derivative of a network?

Are there convergence guarantees?

Backpropagation

What does gradient descent do in general? Have the model make
predictions and update the model in a special way such that the
new weights have lower error.

To do gradient descent with neural networks, we generally use
backpropagation.

Do a forward pass of the data through the network to get
predictions

Compare predictions to true values

Backpropagate errors so the weights make better predictions

Training a
NIN

It's pretty expensive to do this update for the entire dataset at
once, so it's common to break it up into small batches to process
individually.

However, processing each batch only once isn't enough. You
generally have to repeatedly update the model parameters. We
call an iteration that goes over every batch once an epoch.

for i in range(num_epochs):
for batch in batches(training_data):
preds = model.predict(batch.data) # Forward pass
diffs = compare(preds, batch.labels) # Compare
model.backprop(diffs) # Backpropagation

NN
Convergence

In general, loss functions with neural networks are not convex.

This means the backprop algorithm for gradient descent will only
converge to a local optima.

This means that how you initialize the weights is really important
and can impact the final result.

How should you initialize weights? "\ _(*V)_/"

Usually people do random initialization

People also use adaptive ways of changing the learning rate to
reduce the empirical likelihood of getting stuck in local minima.

@ Poll Everywhere

Consider the below neural network, used for regression
(hence, no activation on the last layer).

Thlnk & The input, prediction, and actual label are shown.
. To move the prediction slightly closer to the label, would you
2 mins (increase / decrease) w;?
Input

sum Prediction Label

W,
3 -6.5 1

pollev.com/cs416

@ Poll Everywhere

Consider the below neural network, used for regression
(hence, no activation on the last layer).

e
Group & g The input, prediction, and actual label are shown.
. To move the prediction slightly closer to the label, would you
1 mins (increase / decrease) w;?
Input

sum Prediction Label

W,
3 -6.5 1

pollev.com/cs416

Backpropogation
Intuition on
Multiple Layers

Hyper-
parameter
Tuning

54

Training NN Neural Networks have MANY hyperparameters

How many hidden layers and hidden neurons?
What activation function?

What is the learning rate for gradient descent?
What is the batch size?

How many epochs to train?

And much much more!
How do you decide these values should be? ™\ (*V)_/"

The most frustrating thing is that we don’t have a great grasp on
how these things impact performance, so you generally have to
try them all.

How do we choose hyperparameters to train
Hyperparameter and evaluate?

Optimization

Grid search: () 0‘0 °
e o 0 o \
' 3 Hyperparameters

e o o 07 on 2d uniform grid
o oo o

How do we choose hyperparameters to train
Hyperparameter and evaluate?
Optimization

Grid search: o0
(% \ Hyperparameters
o o

[
L]

- ® 7 on 2d uniform grid
®

Random search: * o .'

® . o ¢ \ Hyperparameters
randomly chosen

Hyperparameter
Optimization

How do we choose hyperparameters to train
and evaluate?

o o 0 o

e s > \ Hyperparameters
o o o o 7 on 2d uniform grid
® Qa ®

Random search: °* ome’
® 0 ® ® . Hyperparameters

° randomly chosen
® o ® 7

Bayesian Optimization: @‘%@
e, %o @

Grid search:

"~ Hyperparameters

(7]
o O ¢ adaptively chosen
® 7

Hyperparameter
Optimization

Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014,
Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012,
Dombhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by

extrapolation of learning curves. In IJCAI, 2015,
Andris Gyorgy and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR 2016

How computation time
was spent?

eval-loss
[=]
¥
=3

1000

0.00 . " " "
o 200 400 600 800

Tips on
Hyperparameter
Optimization

In general, hyperparameter optimization is a non-convex
optimization problem where we know very little about how the
function behaves.

Your time is valuable and compute time is cheap. Write your code
to be modular so you can use compute time to try a range of
values.

Tools for different purposes
Very few evaluations: use random search (and pray)
Few evaluations and long-run computations: See last slide
Moderate number of evaluations: Bayesian optimization

Many evaluations possible: Use random search. Why
overthink it?

Theme: Details of neural networks and how to train them
Ideas:

Perceptron (Single-Layer Neural Network)

Neural Networks

Using the logistic function to turn Score to probability
Logistic Regression

Minimizing error vs maximizing likelihood

Gradient Ascent

Effects of learning rate

Overfitting with logistic regression
Over-confident (probabilities close to O or 1)
Regularization

