
Chapter 4

Feature Selection and LASSO

4.1 Ridge Regression Recap

For ridge regression we use a standard MSE loss with an L2 norm regularizer.

ŵ = argmin
w

MSE(W) + �||w||22 (4.12)

The hyperparameter � can play a large role in how a model behaves. For instance, if � = 0 we would then
have a standard regression model with no regularization. On the opposite side of the spectrum, if � = 1
then any feature usage at all (any weights greater than 0) would penalize the model completely, leaving us
with a model that can only output 0. Clearly, if the goal is to create a useful model that uses regularization
neither of those two options are ideal. Instead, we will use something in between.

When choosing � if it is too small then the model will overfit to the training data. As in previous chapters,
we must evaluate our hyperparameter on the validations set. We should typically pick the model that best
performs on the validation set (lowest error) using MSE only. Why MSE only when we have a regularized
objective function already? The reason is that di↵erent �, or any hyperparemeter for that matter, mean we
are evaluating the model’s performance in di↵erent contexts or ”units”. We could compare the results of
any number of models using the same objective function, however when the hyperparameters are di↵erent
we cannot compare them.

For reference, here is an example process for choosing � for ridge regression.

Algorithm 1 Process for selecting � for ridge regression

for � in �s do Train a model using using Gradient Descent
– ŵridge(�) = argmin

w
MSE(W) + �||w||22

Compute validation error
– validation error = MSEval(ŵridge(�))
Track � with smallest validation error return �

⇤ and estimated future error MSEval(ŵridge(�⇤))

We have seen how regularization can be useful with ridge regression to avoid overfitting by adding a level
of smoothness to our model. However there are many di↵erent ways to regularize and one way we will
investigate is called lasso, useful for selecting features.

4.2 Scaling Features Recap

Features in dataset can have di↵erent units, and if we change our features to di↵erent units, for example,
change meter to kilometer, the corresponding parameter for this feature is also changed. Feature scaling is
important before applying regularization, because regularization penalizes large parameters. Therefore, if
the parameter of a feature gets larger because of unit change, its parameter would be penalized more by
regularization. This is not ideal, since we want regularization to work the same regardless of the units. The
solution to solve this problem is using feature normalization.

4-20

[DRAFT: Content subject to change] 4.4 Introduction to Machine Learning (Non-Majors) 4-21

Definition 4.1: Feature Normalization

h̃j(x) =
hj(x)� µj

�j

where µj is mean of feature j in train set and �j is standard deviation of feature j in train set.

Scaling features is always a good practice for data preprocessing. The only downside is that the features you
have after scaling are no longer as interpretable as before.

To normalize data, we calcuate mean and standard deviation only using train set.

4.3 Feature Selection

Feature selection sounds fun but why should we care? There are three major reasons why feature selection
is useful in machine learning.

1. Complexity - With too many features our model could be overly complex and overfit.

2. Interpretability - With less features, or selected feature, we can better understand our model and
see which features carry more information

3. E�ciency - With less features to consider, our model could be trained much easier and faster

Let’s introduce a scenario where we want to create a good model for predicting the price of a house. We
have the opportunity to collect a wide variety of features, however we are unsure of what features are best
to be used.

Example(s)

3
• Lot size
• Single Family
• Year built
• Last sold price
• Last sale price/sqft
• Finished sqft
• Unfinished sqft
• Finished basement sqft
• Number of floors
• Flooring types
• Parking type
• Parking amount
• Cooling
• Heating
• Exterior materials
• Roof type
• Structure style
• Dishwasher
• Garbage disposal
• Microwave
• Range / Oven
• Refrigerator

4-22 Introduction to Machine Learning (Non-Majors) 4.4 [DRAFT: Content subject to change]]

• Washer
• Dryer
• Laundry location
• Heating type
• Jetted Tub
• Deck
• Fenced Yard
• Lawn
• Garden
• Sprinkler System

You or I could pick out that the features ”lot size” and ”last sold price” (among others) are likely good
indicators of a house’s sale price and that the features ”microwave” and ”garbage disposal” could have an
e↵ect, but are not likely to be key factors for predicting a house sale price.This is a key example of feature
selection.

By selecting a smaller number of features, this model will be more interpretable as it is easier to determine
that ”lot size” is one of the most important features for predicting house price. With less features, our model
can be trained more easily. In addition, if the data must be gathered ourselves, gathering less data points is
simply easier to do.

Although it could be helpful to use all the information available to make a model that can predict well,
a large amount of features can be prohibitively expensive to train. Also, if features are used which are
unimportant it could lead to the model overfitting the data.

Example(s)

Let us imagine it takes us 5 seconds to train a model with 8 features:
• Training 16 features would take 21 minutes.
• Training 32 would take about 3 years.
• Training 100 features would take 7.5 ⇤ 1020 or about 50, 000, 000, 000 times longer than the age
of the universe.

Seems like it might not be worth considering if the ”sprinkler system” feature is included with the house in
our model. One method to select features would be to try every possible combination of features and see how
to model performs manually. However, this can be tedious and without trying every set of hyperparameters
we would not be certain that we have chosen the optimal features. To aid in feature selection we can use
another linear regression model with a new type of regularizer called lasso.

4.4 LASSO

We can create a regression using all of these features and add a regularizer in the hope that we achieve a
sparse weight vector which still performs well on the data. A sparse matrix / vector is one that is filled with
mostly 0. This would help us in feature selection as the unimportant features would have weight 0, meaning
they are not being considered.

Our format for a model with regularization is as such where L(w) is the measure of fit and R(w) measures
the magnitude of coe�cients.

ŵ = argmin
w

L(w) +R(w) (4.13)

[DRAFT: Content subject to change] 4.4 Introduction to Machine Learning (Non-Majors) 4-23

There are many di↵erent ways to create a regularizer. One that works well is the sum of squares which is
what we have seen in ridge regression (L2 norm).

Another possibility is simply the sum of the weights. This however would not be ideal as negative and
positive weights could cancel one another out. To fix this we could sum the absolute value of the weights,
which is exactly what the lasso model does. This is also known as the L1 norm.

Definition 4.2: Lasso Regression Model

ŵ = argmin
w

MSE(W) + �||w||1

Remember the definition of a p-norm.

Definition 4.3: p-norm

||w||pp = |w0|p + |w1|p + ...+ |wd|p

Without lasso, we could have tried di↵erent features and computed the resulting loss, but now we start with
a full model and then shrink coe�cients towards 0. With ridge regression many of our coe�cients as the
model is trained will descend towards 0, but not reach 0. Why? It has to do with the shape of the norm.
Ridge introduces a smoothness to prevent overfit by limiting the amount that one single feature can use.

In general, the coe�cients are pushed towards 0, but never actually reach it despite training for thousands
of epochs. In lasso, the L1 norm favors sparsity and produces a coe�cient path where coe�cients go towards
and actually remain at 0. Take a look at some coe�cient paths for ridge regression below.

Figure 4.18: Ridge (right) and lasso (left) coe�cient paths.

One way to think about this geometrically is that the L1 norm has a ”spikey” solution. In a L1 norm, as
coe�cients are close to 0, the only way to get close to 0 is actually being 0. In a L2 norm, coe�cients can
be very small and not quite reach 0.

In Figure 4.2, L1 has spikes representing the places where the coe�cients are 0. When the unregularized
coe�cient paths (represented in red) touch the regularized solution in either graph we see that the diamond
shape will likely touch at one of its corners where a coe�cient is 0 whereas L2 would be much more likely
to touch equally and at any location on the circle.

When it comes to choosing a � for lasso, the choice is done exactly the same as what we have learned for
ridge regression.

However, there are caveats of using lasso. As with any regularizer, we are adding bias to our least squares
solution (remember bias + variance trade o↵). One way to remove some bias, but still benefit from having
a sparse solution would be to first run lasso, then extract the non-zero features and run those features on

4-24 Introduction to Machine Learning (Non-Majors) 4.4 [DRAFT: Content subject to change]]

Figure 4.19: Visualizing sparse solutions with L1 on left and L2 on right.

a unregularized least squares so that coe�cients are no longer shrunk from their possible ”truth” values as
the model is trained.

As with all types of machine learning it is important to remember that correlation does not equal causation.
Lasso will do exactly what you ask of it and nothing more. Lasso will find the features that are important for
predicting some output well. However, it is important to always think before and after whether the solutions
are representative of the type of data you are training on.

Example(s)

There is a publicly available Communities and Crime Data Set which has a large number of
features which could be trained on to predict where crime will take place based on the demographics
of that location like its population density, the age of people living there, etc.

If you were to train a lasso model on this data set you would likely see that areas where there is a
high proportion of people aged 65 and up usually have low crime and lasso will likely select this as a
good predictor (non-zero coe�cient). This is an example of correlation and not causation. We asked
our model to find good predictors of crime rate, however clearly it would not be logical to attempt to
lower high crime areas by moving lots of senior citizens there. In complex social issues, among other
data sets, remembering to think about what your model is doing vs what you would like it to do is
important.

In practice, lasso can run into some issues. Lasso tends to pick arbitrarily from correlated features, like
number of bathrooms and number of showers from our house price example. In this case it might make
more sense to choose bathrooms or to select them together, however lasso does not o↵er this guarantee. In
addition, lasso tends to have worse performance in practice compare to ridge regression because of the bias
introduced by pushing feature coe�cients towards 0.

A solution to this problem where we want feature selection and the performance from ridge is a model called
elastic net which is simply the combination of a L1 norm and a L2 norm regularizer.

Definition 4.4: Elastic Net

ŵElastic Net = argmin
w

MSE(W) + �1||w||1 + �2||w||22

A combination of both L1 (Lasso) and L2 (Ridge) regularizers.

[DRAFT: Content subject to change] 4.4 Introduction to Machine Learning (Non-Majors) 4-25

To review we learned that lasso:

• Introduces more sparsity to the model.

• Is helpful for feature selection.

• Is less sensitive to outliers.

• Is more computationally e�cient as a model due to the sparse solutions.

And ridge regression:

• Pushes weights towards 0, but not actually 0.

• Is more sensitive to outliers (due to the squared terms).

• In practice, usually performs betters.

This concludes the chapter’s focus on regression and next we will learn about di↵erent models for di↵erent
uses like classification.

	1. Introduction / Regression
	2. Assessing Performance; Bias + Variance Tradeoff
	3. Cross Validation / Regularization
	4. Feature Selection + LASSO
	5. Classification
	6. Logistic Regression
	7. Naive Bayes and Decision Trees
	8. Ensemble Methods
	10. Fairness in ML
	11. Clustering
	12. More Clustering Methods
	13. Dimensionality Reduction / PCA
	14. Recommender Systems
	15. Nearest Neighbors / Distance Metrics
	16. Kernel Methods and Locality Sensitive Hashing

