Chapter 14
Recommender Systems

In this chapter we will be exploring recommender systems. We will take a look at how to utilize matrix
factorization for the recommendation process, limitations of the approach, and solutions.

A recommender system is, in intuitive terms, an algorithm that takes n users and m items, and recommends
users items that they will consume (i.e. products users will buy on Amazon, videos users will watch on
YouTube). Typically, n > m, and there are many different ways that such a system can be implemented, a
few of which we will briefly explore below.

14.1 Popularity

In this type of recommender system, the items recommendeed are purely what are the most popular at the
moment. For example, if a vast majority of Netflix users have been watching the show ”Squid Game” due
to it’s popularity, it will be one of the top shows recommended to other users. Though a system like this
is easy to implement, it is prone to positive feedback loops and lacks personalization for individual users,
whose interests may not always perfectly align with the most popular items.

14.2 User-User

We can typically do better than a simple popularity-based recommender system, and one of those such
methods is with one based on nearest users. In other words, given some user u;, compute some k nearest
neighbors and recommend the items that the users nearest to them. The users and the features for each
user are stored in an n X m matrix, with m representing some number of items that each user has interacted
with. The interaction (i.e. liking a Youtube video, leaving a 1 star Amazon review) is recorded and then
used as each user’s features to calculate the distance between them. Similar users are then recommended
products that users around them interacted positively with.

14.3 Item-Item

Another method is to recommend items that are commonly consumed in tandem. For example, if users
who buy baby formula also often buy diapers on Amazon, then a user who is bought baby formula will be
recommended to buy diapers.

14.3.1 Co-occurence Matrix

Definition 14.1: Co-occurence Matrix

A co-occurence matrix is a popular type of recommender system used to recommend data based
on similarity.

Example(s)

Since a co-occurence matrix can recommend things based on similarity, a good application is product
recommendation. If we have m products in our store, our co-occurence matrix C' will be of size m*m,
and Cj; is the number of people who bought products both 7 and j, where ¢ is along the length of

14-82

[DRAFT: Content subject to change] 14.14 Introduction to Machine Learning (Non-Majors) 14-83

our matrix and j is along the width.

Note that we do have to normalize our data when using a co-occurence matrix, because we don’t want an
item to be falsely associated with all the other items in the matrix just because it is a popular item. We can
normalize by using the JaccardSimilarity:

h ; and j
Similarity between items ¢ and j = # purchases i ancJ (14.28)
purchases i or j

14.3.2 Limitations of the Co-occurence Matrix

While the co-occurence matrix is good at personalizing to a user based on their purchase history, it leaves
out some information that could be equally useful in predicting a user’s purchasing behavior. For example,
context (such as the time of day), the demographics of the users, and the product features are all data that
are not captured by the co-occurence matrix but could have helped recommendation. Finally, a co-occurence
matrix is also not scalable. As we start off with a fixed size for the matrix, once we add a new item, we
come across a cold start problem.

Definition 14.2: Cold Start Problem

The Cold Start problem is an issue that we will repeatedly visit when discussing the limitations
of recommender systems. In essence, this is the issue that occurs when a new item is added to our
dataset, and the fact that this new item has no data on it to begin with yields the false computation
that this item is not compatible with any other item in the dataset.

14.4 Feature Based

Feature based recommender systems are a possible solution to the cold start problem. They rely on features
of the product (i.e. the genre/release year of a movie) and can be additionally enhanced with user specific
features (i.e. age, gender identity) in order to provide recommendations. Now, when new users join or new
products are listed, the system already has some information about the user or item intrinsically (i.e. user’s
age, movie’s genre), thereby allowing us to solve the cold start problem.

Some weights wg € R? are first defined for all users.

Then, the following linear model can be fitted where R is the total number of ratings. Note that we are
trying to solve for 7,, or in other words, the predicted rating that will be assigned to a product based on its
features.

d
o = wHh(v) = ngﬂvhi(v)

1=0

1
W = argwminﬁ Z(wgh(v) —10)? + M|wgl|

v

In order to personalize these results and instead solve for #, ,, the rating for a product personalized to the
user, we can take the following two approaches.

14-84 Introduction to Machine Learning (Non-Majors) 14.14 [DRAFT: Content subject to change]]

14.4.1 Add User-Specific Features

Intuitively, we are just appending to our existing item-specific feature matrix, denoted h(v) the user-specific
features denoted h(u). We can simply rewrite the equations above taking into consideration these features.
Note that d now represents the total number of features across the item and user specific features, instead
of just the item-specific features.

d
Fup = wgh(u, v) = ng’ihi(u,v)
i=0

1
Wg = arg;ninﬁ Z(wgh(u, V) = Tuw)? + M|wel|

u,v

14.4.2 Linear Mixed Models

The Linear Mixed Model approach relies on the inclusion of a user-specified deviation from the global model.
The intuition for this approach is that the global weights will be modified by a set of weights specific to each
user denoted w,, to instead predict 7, ,

'fu,v = ("DG + wu)Th(U)

New users have their w0, initialized to the zero vector, but update over time based on the residuals of the
global model or with Bayesian Update. While the latter is out of the scope of this class, the general process
is that the vector is initialized with a probability distribution over user-specific deviations, then gets updated
as more data is acquired.

14.5 Matrix Factorization

Definition 14.3: Matrix Factorization

Matrix factorization is another type of recommendation system. It utilizes ratings instead of
similarities.

As matrix factorization utilizes ratings, a common application of this recommender system is movie
recommendations.

Let’s consider the movie recommendations example to dissect matrix factorization. First and foremost, note
that for our dataset, we need a collection of ratings from a multitude of users for every movie. Not every
user will rate every movie they watch, so our dataset is very sparse. In matrix factorization, we account for
this by trying to predict what a given user would rate a movie based on other patterns in the data. This
is virtually impossible to do with complete accuracy, because people can be unpredictable. So, we can only
try our best by making assumptions about the dataset.

First, let’s assume that there are k types of movies, and every movie belongs to at least one of those k
types and every user enjoys at least one of those k types. Thus, we describe each movie in our dataset v
with a feature vector R, of length k, such that every value inside of R, is how much v belongs into one of
the k£ movie types. We can describe each user in our dataset w with a feature vector L, of length k, such

[DRAFT: Content subject to change] 14.14 Introduction to Machine Learning (Non-Majors) — 14-85

2 0 3 1 2 6 2 4
12 1

1 1 -_— 4 3 3

0 1 1 2 1

2 1 7 4 5

Figure 14.76: An example of a dot-product calculation of a user feature vector L and a movie feature vector
R.

that every value inside of L, is how much u enjoys each of the k£ movie types. Thus, our predicted rating
Rating(u,v) = L, - R,, the dot product of movie v’s features and user u’s features.

Hence, the problem reduces down to a regression: We must find L and R such that when multipled, achieve
predicted ratings that are close to the values that we have data for. Our quality metric is thus:

L R= argming, g Z (Ly - Ry — 1un)? (14.29)

w,v:r?

u,v : 7?7 are the entries with known ratings.

Recall that in a regression problem, we use gradient descent to update all of our parameters at once. In this
problem, since we have two unknowns L and R, we will instead use coordinate descent, which is a similar
optimizing technique to gradient descent except it updates one coordinate in our optimization at a time. We
alternate between updating coordinates to simplify the computation for each round of optimization.

14.5.1 Coordinate Descent for Matrix Factorization

We will first begin by optimizing for L. One key insight is that what one user prefers should have no
influence on another user so not only can we optimize for L by fixing R, we can also optimize for each
user’s feature vector L, one at a time. This drasticallu simplifies the computation we have to do:

for each user L, = argming, Z (Ly - Ry — 7‘1“,)2 (14.30)
veEV,

where V,, are all the movies user u has rated, and R, — 7y, is fixed. Now, since everything in this formula
except for L, is fixed, we can treat this as a linear regression problem where R, — ry, is an input and L,,
is a coefficient we are intending to learn. Since this is now just linear regression, we can easily use gradient
descent. The same logic goes for movies, so when we alternate to predicting R, we can compute each R,
separately.

14.5.2 Using Results

Via matrix factorization, we can effectively use the movie features R to discover ”topics” of a movie v. This
is useful for categorizing movies into genres, or adding keywords to movies so that they show up with specific
search queries. We can also use user features to discover ”topic preferences” of a user u to recommend
relevant movies to that user.

14-86 Introduction to Machine Learning (Non-Majors) 14.14 [DRAFT: Content subject to change]]

14.5.3 Limitations of Matrix Factorization

Although matrix factorization performs a more personalized computation for each user, it still does not
capture context and fails to solve the cold start problem.

14.6 Blending Models: Featured Matrix Factorization

With matrix factorization, consider the scenario where a movie database adds a new user. As this user has
no data yet, all of their preferences for every movie category starts off as 0. So, when trying to update the
future preferences of this user, we fail to predict reasonably. The solution to this is to supplement matrix
factorization with another machine learning model. We will define a feature vector for each movie that takes
context into consideration, like the movie’s genre, the year it was made, and maybe the director. Then, we
will define a model that learns these features for all the users in the database. So, if we add a new user,
instead of starting their preference for everything at 0, we just set it to be what movies seem to be popular
with the entire population as a whole.

14.7 Evaluating Recommendations

Classification accuracy will not serve us well with recommendation systems since we do not care too much
about what a user does not like, so it is not very practical to go through every single movie in the entire
database and label it with a user’s liking or disliking. Instead, we can measure precision and recall by
assessing how many of our recommendations did the user actually like, and how many of the items that the
user liked did we recommend.

	1. Introduction / Regression
	2. Assessing Performance; Bias + Variance Tradeoff
	3. Cross Validation / Regularization
	4. Feature Selection + LASSO
	5. Classification
	6. Logistic Regression
	7. Naive Bayes and Decision Trees
	8. Ensemble Methods
	10. Fairness in ML
	11. Clustering
	12. More Clustering Methods
	13. Dimensionality Reduction / PCA
	14. Recommender Systems
	15. Nearest Neighbors / Distance Metrics
	16. Kernel Methods and Locality Sensitive Hashing
	17. Neural Networks
	18. Convolutional Neural Networks

