CSE/STAT 416

Recommender Systems: Matrix Factorization

Amal Nanavati University of Washington Aug 10, 2022

Adapted from Hunter Schafer's slides

Administrivia

- Next Week: Course Wrap-Up, Guest Panel, Final
- Deadlines:
 - HW6 late deadline TOMORROW, Thurs 8/11 11:59PM
 - Submit Concept on Gradescope
 - Submit Programming on EdSTEM
 - HW7 (final HW) released TODAY
 - Due Tues 8/16 11:59PM, <u>NO LATE DAYS</u>
 - LR 8 due Fri 8/12 11:59PM
 - **Extra Credit** Guest Panel Mon 8/15 during lecture.
 - Take-Home Final Exam:
 - Wed 8/17 9AM Thurs 8/18 11:59PM

HW7 (Last Homework) Walkthrough

Recap

Recommender Systems Setup

- You have *n* users and *m* items in your system
 - Typically, $n \gg m$. E.g., Youtube: 2.6B users, 800M videos
- Based on the content, we have a way of measuring user preference.
- This data is put together into a **user-item interaction matrix**.

Users	User-item interactions matrix	Items
suscribers	rating given by a user to a movie (integer)	movies
readers	time spent by a reader on an article (float)	articles
buyers	product clicked or not when suggested (boolean)	products

. . .

Task: Given a user u_i or item v_j, predict one or more items to recommend.

Solution 0: Popularity

Simplest Approach: Recommend whatever is popular

Rank by global popularity (i.e., Squid Game)

Solution 1: Nearest User (User-User)

User-User Recommendation:

- Given a user u_i , compute their k nearest neighbors.
- Recommend the items that are most popular amongst the nearest neighbors.

Solution 2: "People Who Bought This Also Bought..." (Item-Item)

Cii = total # users who bought item i

Item-Item Recommendation:

- Create a **co-occurrence matrix** $C \in \mathbb{R}^{m \times m}$ (*m* is the number of items). $C_{ij} = \#$ of users who bought both item *i* and *j*.
- For item *i*, predict the top-k items that are bought together.

Normalizing Co-Occurence Matrices

Solution 3: Feature-Based

Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Genre	Year	Director	
Action	1994	Quentin Tarantino	
Sci-Fi	1977	George Lucas	

Define weights on these features for all users (global)

Fit linear model

$$\hat{r}_{y,v} = \omega_{c}^{T} h(v) = \sum_{j=1}^{Q} \omega_{c,j} h_{j}(v)$$

 $w_G \in \mathbb{R}^d$

$$\hat{\omega}_{G} = \operatorname{argmin}_{u,v} \left(\omega_{C}^{T} h(v) - r_{u,v} \right)^{2} + \lambda || \omega_{C} ||$$

Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Genre	Year	Director	
Action	1994	Quentin Tarantino	
Sci-Fi	1977	George Lucas	

Define weights on these features for **all users** (global) $w_G \in \mathbb{R}^d$

Fit linear model

$$\hat{r}_{uv} = w_G^T h(v) = \sum_i w_{G,i} h_i(v)$$
$$\hat{w}_G = argmin_w \frac{1}{\# ratings} \sum_{u,v:r_{uv}\neq ?} (w_G^T h(v) - r_{uv})^2 + \lambda ||w_G||$$

Personalization: Option A

Add user-specific features to the feature vector!

Item-specific features

Genre	Year	Director	 Gender	Age	
Action	1994	Quentin Tarantino	 F	25	
Sci-Fi	1977	George Lucas	 М	42	

Personalization: Option B

Linear Mixed Model Linear Mixed Effects

Include a user-specified deviation from the global model.

$$\hat{r}_{uv} = (\widehat{w}_G + \widehat{w}_u)^T h(v)$$

Start a new user at $\hat{w}_u = 0$, update over time.

- OLS on the residuals of the global model
- Bayesian Update (start with a probability distribution over user-specific deviations, update as you get more data)

I Poll Everywhere

1 min

What about other pros/cons of feature-based?

Collaborative information

(The user-item interactions matrix)

Content information

Can be users or/and items features

Model

Takes user or/and items features and returns predicted interactions

I Poll Everywhere

2 min

What about other pros/cons of feature-based?

Collaborative information

(The user-item interactions matrix)

Content information

Can be users or/and items features

Model

Takes user or/and items features and returns predicted interactions

Solution 3 (Feature-Based) Pros / Cons

Pros:

- No cold-start issue!
 - Even if a new user/item has no purchase history, you know features about them.
- Personalizes to the user and item.
- Scalable (only need to store weights per feature)
- Can add arbitrary features (e.g., time of day)
 Context -specific features

Cons:

• Hand-crafting features is very tedious and unscalable \otimes

Solution 4: Matrix Factorization

Can we learn the features of items?

Matrix Factorization Assumptions

Assume that each item has k (unknown) features.

e.g., k possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item v with feature vector $R_v \rightarrow r$

How much is the movie action, romance, sci-fi, ...

e.g.,
$$R_v = [0.3, 0.01, 1.5, ...]$$

We can also describe each user u with a feature vector $L_u \rightarrow \text{length} \ltimes$

- How much they like action, romance, sci-fi,
- Example: $L_u = [2.3, 0, 0.7, ...]$

Estimate rating for user u and movie v as $Rating(u, v) = L_u \cdot R_v = 2.3 \cdot 0.3 + 0 \cdot 0.01 + 0.7 \cdot 1.5 + ...$

Matrix Factorization Learning

Goal: Find L_u and R_v that when multiplied, achieve predicted ratings that are close to the values that we have data for.

Our quality metric will be (could use others) 1 2 2

This is the MSE, but we are learning both "weights" (how much the user likes each feature) and item features!

Semi-Supervised Learned

Why Is It Called Matrix Factorization?

Also called **Matrix Completion**, because this technique can be used to fill in missing values of a matrix

I Poll Everywhere

1 min

Suppose we have learned the following user and movie features using 2 features $(\kappa = 2)$

User ID		Feature
	1	(2, 0)
	2	(1, 1)
	3	(0, 1)
	4	(2, 1)

Movie ID	Feature vector
1	(3, 1)
2	(1, 2)
3	(2, 1)

- What is the predicted rating user 1 will have of movie 2?
- What is the highest predicted rating from this matrix factorization model? Which user made the prediction, for which movie?

Poll Everywhere Group 2 min

 $\hat{r}_{12} = L_1 \cdot R_2 = 2 \cdot 1 + 0 \cdot 2 = 2$

Suppose we have learned the following user and movie features using 2 features

	User ID	Feature		Movie ID	Feature vector
L,	1	(2, 0)		1	(3, 1)
	2	(1, 1)	R,	2	(1, 2)
	3	(0, 1)		3	(2, 1)
	4	(2, 1)			

- What is the predicted rating user 1 will have of movie 2?
- What is the highest predicted rating from this matrix factorization model? Which user made the prediction, for which movie?

Example

Suppose we have learned the following user and movie features using 2 features

User ID	Feature
1	(2, 0)
2	(1, 1)
3	(0, 1)
4	(2, 1)

Movie ID	Feature vector
	(3, 1)
2	(1, 2)
3	(2, 1)

Then we can predict what each user would rate each movie

Unique Solution?

Is this problem well posed? Unfortunately, there is not a unique solution $\boldsymbol{\boldsymbol{\Im}}$

For example, assume we had a solution

6	2	4
4	3	3
1	2	1
7	4	5

Then doubling everything in L and halving everything in R is also a valid solution. The same is true for all constant multiples.

6	2	4
4	3	3
1	2	1
7	4	5

L'		R^{T}		
4	0	1.5	0.5	1.0
2	2	0.5	1.0	0.5
0	2			
4	2			

Coordinate Descent

Find $\hat{L} \& \hat{R}$

Remember, our quality metric is

$$\widehat{L}, \widehat{R} = \underset{L,R}{\operatorname{argmin}} \frac{1}{\# \ ratings} \sum_{u,v:r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

Gradient descent is not used in practice to optimize this, since it is much easier to implement **coordinate descent** (i.e., Alternating Least Squares) to find \hat{L} and \hat{R}

Coordinate Descent

Goal: Minimize some function $g(w) = g(w_0, w_1, ..., w_D)$

Instead of finding optima for all coordinates, do it for one coordinate at a time!

Initialize $\widehat{w} = 0$ (or smartly) while not converged: pick a coordinate j $\widehat{w}_{j} = \operatorname*{argmin}_{W} g(\widehat{w}_{0}, ..., \widehat{w}_{j-1}, w, \widehat{w}_{j+1}, ..., \widehat{w}_{D})$

To pick coordinate, can do round robin or pick at random each time.

Guaranteed to find an optimal solution under some constraints Strong convexity, Smooth Coordinate Descent for Matrix Factorization

$$\hat{L}, \hat{R} = \underset{L,R}{\operatorname{argmin}} \frac{1}{\# \ ratings} \sum_{u,v:r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

Fix movie factors R and optimize for L $\hat{L} = \operatorname{argmin}_{\underline{L}} \frac{1}{\# \ ratings} \sum_{u,v:r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$

First key insight: users are independent! $\hat{L}_{u} = \operatorname{argmin}_{L_{u}} \frac{1}{\# \ ratings \ for \ u} \sum_{v:r_{uv}\neq ?} (L_{u} \cdot R_{v} - r_{uv})^{2}$ Coordinate Descent for Matrix Factorization

$$\hat{L}_{u} = \underset{L_{u}}{\operatorname{argmin}} \frac{1}{\# \ ratings \ for \ u} \sum_{v: r_{uv} \neq ?} (L_{u} \cdot R_{v} - r_{uv})^{2}$$

Second key insight: this looks a lot like linear regression!

$$\widehat{w} = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\widehat{w} \cdot \underline{h(x_i)} - y_i)^2$$

Takeaway: For a fixed R, we can learn L using linear regression, separately per user.

Conversely, for a fixed *L*, we can learn *R* using linear regression, separately per movie.

Overall Algorithm

Want to optimize

$$\hat{L}, \hat{R} = \underset{L,R}{\operatorname{argmin}} \frac{1}{\# \ ratings} \sum_{u,v:r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2$$

Fix movie factors *R*, and optimize for user factors separately

• Step 1: Independent least squares for each user

$$\hat{L}_{u} = \underset{L_{u}}{\operatorname{argmin}} \frac{1}{\# \ ratings \ for \ u} \sum_{v \in V_{u}} (L_{u} \cdot R_{v} - r_{uv})^{2} + \lambda \| L_{u} \|$$

Fix user factors, and optimize for movie factors separately

Step 2: Independent least squares for each movie

$$\hat{R}_{v} = \underset{R_{v}}{\operatorname{argmin}} \frac{1}{\# \ ratings \ for \ v} \sum_{u \in U_{v}} (L_{u} \cdot R_{v} - r_{uv})^{2} + \lambda \| R_{v} \|$$

Repeatedly do these steps until convergence (to local optima) System might be underdetermined: Use regularization

I Poll Everywhere

1.5 minutes

Consider we had the ratings matrix

K=3

During one step of optimization, user and movie factors are

	User Factors
User 1	[1, 2, 1]
User 2	[1,1,0]

	Movie Factors
Movie 1	[2,1,0]
Movie 2	[0, 0, 2]

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the *user factors.* Which factors would change?

- User 1
- User 2
- User 1 and 2
- None

	Movie 1	Movie 2
User 1	4	?
User 2	?	2

Poll Everywhere

Group 22

3 minutes

Consider we had the ratings matrix

	Movie 1	Movie 2
User 1	4 4	?
User 2	?	

Movie Factors

[2, 1, 0]

[0, 0, 2]

=1.0+1.0+0.2

 $\hat{r}_{1,1} = [1,2,1] \cdot [2,1,0] \\= 1 \cdot 2 + 2 \cdot 1 + (1 \cdot 0) = H$

Movie 1

Movie 2

During one step of optimization, user and movie factors are

	User Factors
User 1	[1, 2, 1]
User 2	[1, 1, 0]

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user factors. Which factors would change? $= [1,1,0] \cdot [0,2]$

 $\frac{1}{7}((4-4)^{2}+(2-0)^{2})$

MSE =

User 1

User 2

- User 1 and 2
- None

What Has Matrix Factorization Learnt?

Matrix Factorization is a very versatile technique!

- Learns a latent space of topics that are most predictive of user preferences.
- Learns the "topics" that exist in movie $v: \hat{R}_v$
- Learns the "topic preferences" for user u: \hat{L}_u

Applications: Recommender Systems

Recommendations: (Semi-Supervised)

- Use matrix factorization to predict user ratings on movies the user hasn't watched
- Recommend movies with highest predicted rating

User	Movie	Rating										
×.		★★★★										
		$\star \star \star \star \star$										
		$\star \star \star \star \star$										
*		$\star \star \star \star \star$										
×.		\star								Gen	Note (Pr
×		★ ★★★								eve	n fo	1
*		$\star \star \star \star \star$								7		
1		$\star \star \star \star \star$		-		4	27	2		2 2	7	
1		$\star \star \star \star \star$			340		Contractory of the second	》 [11]		?		_
			User 1	5	2	7	?	3				٩
			User 2		2		4					
			User 3			3			=			
			User 4	1								4
			User 5			4						
			User 6		5			2				

Applications: Topic Modeling

Topic Modeling: (Unsupervised)

- Treat the TF-IDF matrix as the user-item matrix
 - Documents are "users"
 - Words are "items"
- L tells us which topics are present in each document $(+\omega ee +)$
- *R* tells us what words each topic is composed of

- Oftentimes, the topics are interpretable! 11
- HW7 Programming: Tweet Topic Modeling 11

party law government election court president elected council general minister political national members publical electron demonstrative publical electron de	york county american united city washington john texas served virginia amnsyvnik war movid ohio chicago williem carolien north forded illiono george james die massachusetts president amed jersety president was season team	century king Doman empire greek Dancient emperor il Kingdom period batte aity ting great wara de adty reign som vonture de varasty nor my centure dy	engine car design model cars production built engine vehicle class models speed vehicles design produced power front system standard pun company infodued angene modor re standard pun company design and standard states and standard states and states and states and states and states and states and
Married family. king daughterjohn death william father born wife royal ireland irish henry house lord charles sir prince brother children england queen duke thomas years marriage goorge earl ddward english season diabeth som arrives goorge	Game league games played coach football record teams baseball field year second cares baseball field year backey three yards work base the care of the second second the second team baseball year de work was the care of the second second team of the team baseball year and the second second team of the team baseball years to be second to be second to be second team baseball years to be second to be second to be second to be second to be second t	Species family birds small long large animals or plants genus pien network heads the first product whe back-draw heads the first product whe back-draw heads are network back- heads are producted and the set of heads are network back- heads more food tends hut and heads most first the set of heads and the set of the set of the set of heads and the set of the set of the set of heads and the set of the set of the set of heads and the set of the set of the set of the heads and the set of the set of the set of the heads and the set of the set of the set of the heads and the set of the set of the set of the heads and the set of the set of the set of the heads and the set of the set of the set of the heads and the set of the set of the set of the head and the set of the set of the set of the head and the set of the set of the set of the head and the set of the set of the set of the set of the head and the set of the set of the set of the set of the head and the set of the set of the set of the set of the set of the set of the	works artists collection degis arts painting artist gallery paintings exhibition style ac- noduring patient exhibitions years hadror patient fre early considered exhibitions hadror contemporty collections years hadror contemports and contemports ported photographic began studio dei midde enhibite photoced designed pend visual
appenent yer auch täg täg grät soceeder ofer i menber auste schoool students university high college schools education year program studer ampus ommunity angeme tening autorister merkes sender attoder year studer teneter sender studer year education i education studer studer educational i education studer studer educational i education school year educationer i education studer educationer i education studer educationer i education studer educationer i education school year educationer i education year educationer i education year educationer i educationer i education year educationer i educationer i education year educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educationer i educati	album band song released music songs single record recorded rock bands release live tour video record albums label group recording guter took were vision facto number factured the	radio station news television channel broadcast stations network media tv broadcasting time format local program bbc programming live meming host local case a cable	AGC 18 populatio income average years median living 65 males females households 100 fam people families older town si city household miles density American towenby total area count

War army military

n model cars forces battle force british on built engines command general navy shi hicles designed ower front system

whitered black blue called

ts collection desig color will head green gold sig hibition style mall hand long arms top flag

tog wood body type large

18 population music average years

iving 65 males

Solution 4 (Matrix Factorization) Pros / Cons

Pros:

- Personalizes to item and user!
- Learns latent features that are most predictive of user ratings.

Cons:

- Cold-Start Problem
 - What do you do about new users or items, with no data?

Common Issues with Recommender Systems

(and some solutions)

Recommender systems

Content based methods

Define a model for user-item interactions where users and/or items representations are given (explicit features).

feature - based

Model based

Memory based

Define a model for user-item interactions where users and items representations have to be learned from interactions matrix. Define no model for user-item interactions and rely on similarities between users or items in terms of observed interactions.

matrix factorization item.

item-item User-user

Hybrid methods

Mix content based and collaborative filtering approaches.

n users >> m items

Comparing Recommender Systems

	Efficiency (Space, Deploy)	Efficiency (Time, Deploy)	Addresses Cold- Start?	Personalizes to User?	Discovers Latent Features?
User-User		: <	\sim	: `	\sim
ltem-ltem	: ſ	•		:(
Feature- Based	:-	:)		•)	
Matrix Factorization	•••	:)	~	• >	••••
Hybrid (Feature- Based + Matrix Factorization)		• •			• • •

Comparing Recommender Systems

	Efficiency (Space, Deploy)	Efficiency (Time, Deploy)	Addresses Cold- Start?	Personalizes to User?	Discovers Latent Features?
User-User				(I)	
ltem-ltem					
Feature- Based	(Î.)				
Matrix Factorization	(I:)				
Hybrid (Feature- Based + Matrix Factorization)	:				

I Poll Everywhere

Think 원

1 min

- You are a software engineer at Spotify and have developed a matrix-factorization based recommendation system. The system works very well on existing users and songs, but does not work on new users or new songs.
- How can you augment, extend, and/or modify your recommender system to handle new songs/users?

Poll Everywhere Group 22 2 min

- You are a software engineer at Spotify and have developed a matrix-factorization based recommendation system. The system works very well on existing users and songs, but does not work on new users or new songs.
- How can you augment, extend, and/or modify your recommender system to handle new songs/users?

Cold-Start Problem

When a new user comes in, we don't know what items they like! When a new item comes into our system, we don't know who likes it! This is called the **cold start** problem.

Addressing the cold-start problem (for new users):

- Give random predictions to a new user.
- Give the globally popular recommendations to a new user.
- Require users to rate items before using the service.
- Use a feature-based model (or a hybrid between featurebased and matrix factorization) for new users.

Top-K versus Diverse Recommendations

Top-k recommendations might be very redundant

Someone who likes Rocky I also will likely enjoy Rocky II, Rocky III, Rocky IV, Rocky V

Diverse Recommendations

- Users are multi-faceted & we want to hedge our bets
- Maybe recommend: Rocky II, Always Sunny in Philadelphia, Robin Hood

Solution: Maximal Marginal Relevance

- Pick recommendations one-at-a-time.
- Select the item that the user is most likely to like and that is most dissimilar from existing recommendations.
 - Hyperparameter λ to trade-off between those objectives.

Feedback Loops / Echo Chambers

Users always get recommended similar content and are unable to discover new content they might like.

- Exploration-Exploitation Dilemma
 - Common problem in "online learning" settings
- Pure Exploration: show users random content
 - Users can discover new interests, but will likely be unsatisfied
- Pure Exploitation: show users content they're likely to like
 - Users can't discover new interests.
- Solution: Multi-Armed Bandit Algorithms (beyond the scope of 416)

Radicalization Pathways

In the real-world, recommender systems guide us along a path through the content in a service.

- If watch video 1, recommend video 2
- If watch video 2, recommend video 3

<u>A 2019 study</u> found that YouTube's algorithms lead users to more and more radical content.

- "Intellectual Dark Web" → Alt-Lite → Alt-Right
- See more: iSchool 2021 Spring Lecture on <u>Algorithmic Bias &</u> <u>Governance</u>

Youtube's response <u>has been whack-a-mole</u>. (Remove the content, manually tweak the recommendations for that topic)

A sustainable solution to this must incorporate both human values and technical innovation!

Evaluating Recommender Systems

MSE / Accuracy?

- It is possible to evaluate recommender systems using existing metrics we have learnt:
 - MSE (if predicting ratings)
 - Accuracy (if predicting like/dislike, or click/ignore)
- However, we don't really care about accurately predicting what a user won't like.
- Rather, we care about finding the few items they will like.

Instead, we focus on the following metrics:

- How many of our recommendations did the user like? Precision
- How many of the items that the user liked did we recommend?

Sound familiar?

Precision -Recall

Precision and recall for recommender systems

 $precision = \frac{\# \ liked \ \& \ shown}{\# \ shown}$ $recall = \frac{\# \ liked \ \& \ shown}{\# \ liked}$

What happens as we vary the number of recommendations we make?

Best Recommender System:

- **Top-1**: high precision, low recall
- Top-k (large k): high precision, high recall

Average Recommender System:

- **Top-1**: average precision, low recall
- Top-k (large k): low precision, high recall

Precision -Recall Curves

Comparing Recommender Systems

In general, it depends

- What is true always is that for a given precision, we want recall to be as large as possible (and vice versa)
- What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision (**precision at k**)

Recap

Now you know how to:

- Describe the input (observations, number of "topics") and output ("topic" vectors, predicted values) of a matrix factorization model
- Implement a coordinate descent algorithm for optimizing the matrix factorization objective presented
- Compare different approaches to recommender systems
- Describe the cold-start problem and ways to handle it (e.g., incorporating features)
- Analyze performance of various recommender systems in terms of precision and recall
- Use AUC or precision-at-k to select amongst candidate algorithms