
CSE/STAT 416
Recommender Systems:
Matrix Factorization

Amal Nanavati
University of Washington
Aug 10, 2022

Adapted from Hunter Schafer’s slides

Administrivia ▪ Next Week: Course Wrap-Up, Guest Panel, Final

▪ Deadlines:
- HW6 late deadline TOMORROW, Thurs 8/11 11:59PM

- Submit Concept on Gradescope
- Submit Programming on EdSTEM

- HW7 (final HW) released TODAY
- Due Tues 8/16 11:59PM, NO LATE DAYS

- LR 8 due Fri 8/12 11:59PM
- Extra Credit Guest Panel Mon 8/15 during lecture.
- Take-Home Final Exam:

- Wed 8/17 9AM – Thurs 8/18 11:59PM

2

HW7 (Last
Homework)
Walkthrough

3

Recap

4

▪ You have 𝑛 users and 𝑚 items in your system
- Typically, 𝑛 ≫ 𝑚. E.g., Youtube: 2.6B users, 800M videos

▪ Based on the content, we have a way of measuring user preference.

▪ This data is put together into a user-item interaction matrix.

▪ Task: Given a user 𝑢𝑖 or item 𝑣𝑗, predict one or more items to
recommend.

Recommender
Systems Setup

5

Solution 0:
Popularity

Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e., Squid Game)

6

Sum
Across
Users

Recommend
Top-K

Solution 1:
Nearest User
(User-User)

User-User Recommendation:

▪ Given a user 𝑢𝑖 , compute their 𝑘 nearest neighbors.

▪ Recommend the items that are most popular amongst the
nearest neighbors.

7

Solution 2:
“People Who
Bought This
Also
Bought…”
(Item-Item)

Item-Item Recommendation:

▪ Create a co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number
of items). 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗.

▪ For item 𝑖, predict the top-k items that are bought together.

8

Normalizing
Co-Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

𝑆𝑖𝑗 =
purchased 𝑖 and 𝑗

purchased 𝑖 or 𝑗
=

𝐶𝑖𝑗
𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 𝐶𝑖𝑗

9

Solution 3:
Feature-
Based

10

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

11

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Solution 3:
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

Ƹ𝑟𝑢𝑣 = 𝑤𝐺
𝑇ℎ 𝑣 =෍

𝑖

𝑤𝐺,𝑖 ℎ𝑖(𝑣)

ෝ𝑤𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝑤𝐺
𝑇ℎ 𝑣 − 𝑟𝑢𝑣

2
+ 𝜆 𝑤𝐺

12

Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …

Personalization:
Option A

Add user-specific features to the feature vector!

13

Genre Year Director … Gender Age …

Action 1994 Quentin
Tarantino

… F 25 …

Sci-Fi 1977 George Lucas … M 42 …

Personalization:
Option B

Include a user-specified deviation from the global model.

Ƹ𝑟𝑢𝑣 = ෝ𝑤𝐺 + ෝ𝑤𝑢
𝑇ℎ 𝑣

Start a new user at ෝ𝑤𝑢 = 0, update over time.

▪ OLS on the residuals of the global model

▪ Bayesian Update (start with a probability distribution over
user-specific deviations, update as you get more data)

14

pollev.com/cs416

ThinkThinkThink

▪ Will feature-based recommender systems suffer from the
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?

15

1 min

pollev.com/cs416

ThinkThinkThink

▪ Will feature-based recommender systems suffer from the
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?

16

2 min

Solution 3
(Feature-
Based) Pros /
Cons

Pros:

▪ No cold-start issue!
- Even if a new user/item has no purchase history, you

know features about them.

▪ Personalizes to the user and item.

▪ Scalable (only need to store weights per feature)

▪ Can add arbitrary features (e.g., time of day)

Cons:

▪ Hand-crafting features is very tedious and unscalable 

17

Solution 4:
Matrix
Factorization

Can we learn the

features of items?

18

Matrix
Factorization
Assumptions

Assume that each item has 𝑘 (unknown) features.

▪ e.g., 𝑘 possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, sci-fi, …

▪ e.g., 𝑹𝒗 = 0.3, 0.01, 1.5, …

We can also describe each user 𝒖 with a feature vector 𝑳𝒖
▪ How much they like action, romance, sci-fi, ….

▪ Example: 𝐿𝑢 = [2.3, 0 , 0.7 , …]

Estimate rating for user 𝒖 and movie 𝒗 as
෣𝑅𝑎𝑡𝑖𝑛𝑔 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 + …

19

Matrix
Factorization
Learning

20

Goal: Find 𝐿𝑢 and 𝑅𝑣 that when multiplied, achieve predicted
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

This is the MSE, but we are learning both “weights” (how much
the user likes each feature) and item features!

Why Is It
Called Matrix
Factorization?

21

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Also called Matrix Completion, because this technique can be used to fill
in missing values of a matrix

pollev.com/cs416

ThinkThinkThink

Suppose we have learned the following user and movie features
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?

22

1 min

pollev.com/cs416

Group

Suppose we have learned the following user and movie features
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix
factorization model? Which user made the prediction, for
which movie?

23

2 min

Example Suppose we have learned the following user and movie features
using 2 features

Then we can predict what each user would rate each movie

24

Unique
Solution?

Is this problem well posed? Unfortunately, there is not a unique
solution 

For example, assume we had a solution

Then doubling everything in 𝐿 and halving everything in 𝑅 is also
a valid solution. The same is true for all constant multiples.

25

Brain BreakBrain BreakBrain Break

26

Coordinate
Descent

27

Find ෠𝐿 & ෠𝑅 Remember, our quality metric is

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Gradient descent is not used in practice to optimize this, since it is
much easier to implement coordinate descent (i.e., Alternating
Least Squares) to find ෠𝐿 and ෠𝑅

28

Coordinate
Descent

Goal: Minimize some function 𝑔 𝑤 = 𝑔(𝑤0, 𝑤1, … , 𝑤𝐷)

Instead of finding optima for all coordinates, do it for one
coordinate at a time!

To pick coordinate, can do round robin or
pick at random each time.

Guaranteed to find an optimal solution
under some constraints

29

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ෝ𝑤 = 0 (𝑜𝑟 𝑠𝑚𝑎𝑟𝑡𝑙𝑦)
𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑:

𝑝𝑖𝑐𝑘 𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑗
ෝ𝑤𝑗= argmin

𝑤
𝑔(ෝ𝑤0 , … , ෝ𝑤𝑗−1 , 𝑤, ෝ𝑤𝑗+1 , … , ෝ𝑤𝐷)

Coordinate
Descent for
Matrix
Factorization

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Fix movie factors 𝑅 and optimize for 𝐿

෠𝐿 = argmin
𝐿

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

First key insight: users are independent!

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

30

Coordinate
Descent for
Matrix
Factorization

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Second key insight: this looks a lot like linear regression!

ෝ𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝑤 ⋅ ℎ 𝑥𝑖 − 𝑦𝑖
2

Takeaway: For a fixed 𝑅 , we can learn 𝐿 using linear regression,
separately per user.

Conversely, for a fixed 𝐿, we can learn 𝑅 using linear regression,
separately per movie.

31

Overall
Algorithm

Want to optimize

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix movie factors 𝑅, and optimize for user factors separately

▪ Step 1: Independent least squares for each user

෠𝐿𝑢 = argmin
𝐿𝑢

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣∈𝑉𝑢

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix user factors, and optimize for movie factors separately

▪ Step 2: Independent least squares for each movie

෠𝑅𝑣 = argmin
𝑅𝑣

1

𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑣
෍

𝑢∈𝑈𝑣

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Repeatedly do these steps until convergence (to local optima)

System might be underdetermined: Use regularization 32

pollev.com/cs416

ThinkThinkThink

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user
factors. Which factors would change?

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None

33

1.5 minutes

pollev.com/cs416

Group

34

3 minutes

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user
factors. Which factors would change?

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None

What Has
Matrix
Factorization
Learnt?

Matrix Factorization is a very versatile technique!

▪ Learns a latent space of topics that are most predictive of user
preferences.

▪ Learns the “topics” that exist in movie 𝑣: ෠𝑅𝑣
▪ Learns the “topic preferences” for user 𝑢: ෠𝐿𝑢
▪ Predict how much a user 𝑢 will like a movie 𝑣

෣𝑅𝑎𝑡𝑖𝑛𝑔 𝑢, 𝑣 = ෠𝐿𝑢 ⋅ ෠𝑅𝑣

35

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Applications:
Recommender
Systems

Recommendations: (Semi-Supervised)

▪ Use matrix factorization to predict user ratings on movies the user
hasn’t watched

▪ Recommend movies with highest predicted rating

36

User Movie Rating

Applications:
Topic
Modeling

Topic Modeling: (Unsupervised)

▪ Treat the TF-IDF matrix as the user-item matrix
- Documents are ”users”
- Words are “items”

▪ 𝐿 tells us which topics are present in each document

▪ 𝑅 tells us what words each topic is composed of

▪ Oftentimes, the topics are interpretable!

▪ HW7 Programming: Tweet Topic Modeling

37

Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X = ≈X L
R’

=

Application to text data:

Solution 4
(Matrix
Factorization)
Pros / Cons

Pros:

▪ Personalizes to item and user!

▪ Learns latent features that are most predictive of user ratings.

Cons:

▪ Cold-Start Problem
- What do you do about new users or items, with no

data?

38

Common
Issues with
Recommender
Systems

(and some solutions)

39

40

Comparing
Recommender
Systems

41

Efficiency
(Space,
Deploy)

Efficiency
(Time,

Deploy)

Addresses
Cold-
Start?

Personalizes
to User?

Discovers
Latent

Features?

User-User

Item-Item

Feature-
Based

Matrix
Factorization

Hybrid
(Feature-
Based +

Matrix
Factorization)

Comparing
Recommender
Systems

42

Efficiency
(Space,
Deploy)

Efficiency
(Time,

Deploy)

Addresses
Cold-
Start?

Personalizes
to User?

Discovers
Latent

Features?

User-User 😟 😟 😟 😀 😟

Item-Item 😟 😀 😟 😟 😟

Feature-
Based 😀 😀 😀 😀 😟

Matrix
Factorization 😐 😀 😟 😀 😀

Hybrid
(Feature-
Based +

Matrix
Factorization)

😐 😀 😀 😀 😀

pollev.com/cs416

ThinkThinkThink

▪ You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The
system works very well on existing users and songs, but does
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your
recommender system to handle new songs/users?

43

1 min

pollev.com/cs416

Group

▪ You are a software engineer at Spotify and have developed a
matrix-factorization based recommendation system. The
system works very well on existing users and songs, but does
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your
recommender system to handle new songs/users?

44

2 min

Cold-Start
Problem

When a new user comes in, we don’t know what items they like!
When a new item comes into our system, we don’t know who
likes it! This is called the cold start problem.

Addressing the cold-start problem (for new users):

▪ Give random predictions to a new user.

▪ Give the globally popular recommendations to a new user.

▪ Require users to rate items before using the service.

▪ Use a feature-based model (or a hybrid between feature-
based and matrix factorization) for new users.

45

Top-K versus
Diverse
Recommend-
ations

46

Top-k recommendations might be very redundant

▪ Someone who likes Rocky I also will likely enjoy Rocky II, Rocky
III, Rocky IV, Rocky V

Diverse Recommendations

▪ Users are multi-faceted & we want to hedge our bets

▪ Maybe recommend: Rocky II, Always Sunny in Philadelphia,
Robin Hood

Solution: Maximal Marginal Relevance

▪ Pick recommendations one-at-a-time.

▪ Select the item that the user is most likely to like and that is
most dissimilar from existing recommendations.

- Hyperparameter 𝜆 to trade-off between those objectives.

Feedback
Loops / Echo
Chambers

Users always get recommended similar content and are unable to
discover new content they might like.

▪ Exploration-Exploitation Dilemma
- Common problem in “online learning” settings

▪ Pure Exploration: show users random content
- Users can discover new interests, but will likely be unsatisfied

▪ Pure Exploitation: show users content they’re likely to like
- Users can’t discover new interests.

▪ Solution: Multi-Armed Bandit Algorithms (beyond the scope of 416)
47

content users
watch

their
recommendations

influencesinfluences

Radicalization
Pathways

In the real-world, recommender systems guide us along a path
through the content in a service.

▪ If watch video 1, recommend video 2

▪ If watch video 2, recommend video 3

A 2019 study found that YouTube’s algorithms lead users to
more and more radical content.

▪ “Intellectual Dark Web” ➔ Alt-Lite ➔ Alt-Right

▪ See more: iSchool 2021 Spring Lecture on Algorithmic Bias &
Governance

Youtube’s response has been whack-a-mole. (Remove the
content, manually tweak the recommendations for that topic)

A sustainable solution to this must incorporate both human
values and technical innovation!

48

https://arxiv.org/abs/1908.08313
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://www.themantle.com/arts-and-culture/why-youtubes-decision-remove-far-right-content-not-enough

Evaluating
Recommender
Systems

49

MSE /
Accuracy?

▪ It is possible to evaluate recommender systems using existing
metrics we have learnt:

- MSE (if predicting ratings)
- Accuracy (if predicting like/dislike, or click/ignore)

▪ However, we don’t really care about accurately predicting
what a user won’t like.

▪ Rather, we care about finding the few items they will like.

Instead, we focus on the following metrics:

▪ How many of our recommendations did the user like?

▪ How many of the items that the user liked did we
recommend?

Sound familiar?
50

Precision -
Recall

Precision and recall for recommender systems

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

𝑠ℎ𝑜𝑤𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

#𝑙𝑖𝑘𝑒𝑑

What happens as we vary the number of recommendations we make?

Best Recommender System:

▪ Top-1: high precision, low recall

▪ Top-k (large k): high precision, high recall

Average Recommender System:

▪ Top-1: average precision, low recall

▪ Top-k (large k): low precision, high recall
51

Precision -
Recall
Curves

52

Comparing
Recommender
Systems

In general, it depends

▪ What is true always is that for a given precision, we want
recall to be as large as possible (and vice versa)

▪ What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision
(precision at k)

53

Recap

Now you know how to:

▪ Describe the input (observations, number of “topics”) and
output (“topic” vectors, predicted values) of a matrix
factorization model

▪ Implement a coordinate descent algorithm for optimizing the
matrix factorization objective presented

▪ Compare different approaches to recommender systems

▪ Describe the cold-start problem and ways to handle it (e.g.,
incorporating features)

▪ Analyze performance of various recommender systems in
terms of precision and recall

▪ Use AUC or precision-at-k to select amongst candidate
algorithms

54

