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Administrivia ▪ Next Week: Course Wrap-Up, Guest Panel, Final

▪ Deadlines:
- HW6 late deadline TOMORROW, Thurs 8/11 11:59PM

- Submit Concept on Gradescope
- Submit Programming on EdSTEM

- HW7 (final HW) released TODAY
- Due Tues 8/16 11:59PM, NO LATE DAYS

- LR 8 due Fri 8/12 11:59PM
- Extra Credit Guest Panel Mon 8/15 during lecture.
- Take-Home Final Exam: 

- Wed 8/17 9AM – Thurs 8/18 11:59PM
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HW7 (Last 
Homework) 
Walkthrough
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Recap
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▪ You have 𝑛 users and 𝑚 items in your system
- Typically, 𝑛 ≫ 𝑚. E.g., Youtube: 2.6B users, 800M videos

▪ Based on the content, we have a way of measuring user preference.

▪ This data is put together into a user-item interaction matrix.

▪ Task: Given a user 𝑢𝑖 or item 𝑣𝑗, predict one or more items to 
recommend.

Recommender 
Systems Setup
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Solution 0: 
Popularity

Simplest Approach: Recommend whatever is popular

▪ Rank by global popularity (i.e., Squid Game)
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Sum 
Across 
Users

Recommend 
Top-K



Solution 1: 
Nearest User 
(User-User)

User-User Recommendation:

▪ Given a user 𝑢𝑖 , compute their 𝑘 nearest neighbors. 

▪ Recommend the items that are most popular amongst the 
nearest neighbors.
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Solution 2: 
“People Who 
Bought This 
Also 
Bought…” 
(Item-Item)

Item-Item Recommendation:

▪ Create a co-occurrence matrix 𝐶 ∈ ℝ𝑚×𝑚 (𝑚 is the number 
of items). 𝐶𝑖𝑗 = # of users who bought both item 𝑖 and 𝑗.

▪ For item 𝑖, predict the top-k items that are bought together.
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Normalizing 
Co-Occurence
Matrices

Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

𝑆𝑖𝑗 =
# purchased 𝑖 and 𝑗

# purchased 𝑖 or 𝑗
=

𝐶𝑖𝑗
𝐶𝑖𝑖 + 𝐶𝑗𝑗 − 𝐶𝑖𝑗
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Solution 3: 
Feature-
Based
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Solution 3: 
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

11
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Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …



Solution 3: 
Feature-
Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

Define weights on these features for all users (global)
𝑤𝐺 ∈ ℝ𝑑

Fit linear model

Ƹ𝑟𝑢𝑣 = 𝑤𝐺
𝑇ℎ 𝑣 =෍

𝑖

𝑤𝐺,𝑖 ℎ𝑖(𝑣)

ෝ𝑤𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝑤𝐺
𝑇ℎ 𝑣 − 𝑟𝑢𝑣

2
+ 𝜆 𝑤𝐺
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Genre Year Director …

Action 1994 Quentin Tarantino …

Sci-Fi 1977 George Lucas …



Personalization: 
Option A

Add user-specific features to the feature vector!
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Genre Year Director … Gender Age …

Action 1994 Quentin 
Tarantino

… F 25 …

Sci-Fi 1977 George Lucas … M 42 …



Personalization: 
Option B

Include a user-specified deviation from the global model.

Ƹ𝑟𝑢𝑣 = ෝ𝑤𝐺 + ෝ𝑤𝑢
𝑇ℎ 𝑣

Start a new user at ෝ𝑤𝑢 = 0, update over time.

▪ OLS on the residuals of the global model

▪ Bayesian Update (start with a probability distribution over 
user-specific deviations, update as you get more data)
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pollev.com/cs416

ThinkThinkThink

▪ Will feature-based recommender systems suffer from the 
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?

15
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pollev.com/cs416

ThinkThinkThink

▪ Will feature-based recommender systems suffer from the 
cold start problem? Why or why not?

▪ What about other pros/cons of feature-based?
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2 min



Solution 3 
(Feature-
Based) Pros / 
Cons

Pros:

▪ No cold-start issue!
- Even if a new user/item has no purchase history, you 

know features about them.

▪ Personalizes to the user and item.

▪ Scalable (only need to store weights per feature)

▪ Can add arbitrary features (e.g., time of day)

Cons:

▪ Hand-crafting features is very tedious and unscalable 
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Solution 4: 
Matrix 
Factorization

Can we learn the 

features of items?
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Matrix 
Factorization 
Assumptions

Assume that each item has 𝑘 (unknown) features.

▪ e.g., 𝑘 possible genres of movies (action, romance, sci-fi, etc.)

Then, we can describe an item 𝒗 with feature vector 𝑹𝒗

▪ How much is the movie action, romance, sci-fi, …

▪ e.g., 𝑹𝒗 = 0.3, 0.01, 1.5, …

We can also describe each user 𝒖 with a feature vector 𝑳𝒖
▪ How much they like action, romance, sci-fi, ….

▪ Example: 𝐿𝑢 = [2.3, 0 , 0.7 , … ]

Estimate rating for user 𝒖 and movie 𝒗 as
෣𝑅𝑎𝑡𝑖𝑛𝑔 𝒖, 𝒗 = 𝑳𝒖 ⋅ 𝑹𝒗 = 2.3 ⋅ 0.3 + 0 ⋅ 0.01 + 0.7 ⋅ 1.5 + …
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Matrix 
Factorization 
Learning

20

Goal: Find 𝐿𝑢 and 𝑅𝑣 that when multiplied, achieve predicted 
ratings that are close to the values that we have data for.

Our quality metric will be (could use others)

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

This is the MSE, but we are learning both “weights” (how much 
the user likes each feature) and item features! 



Why Is It 
Called Matrix 
Factorization?
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≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating

Also called Matrix Completion, because this technique can be used to fill 
in missing values of a matrix



pollev.com/cs416

ThinkThinkThink

Suppose we have learned the following user and movie features 
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix 
factorization model? Which user made the prediction, for 
which movie?

22

1 min



pollev.com/cs416

Group

Suppose we have learned the following user and movie features 
using 2 features

▪ What is the predicted rating user 1 will have of movie 2?

▪ What is the highest predicted rating from this matrix 
factorization model? Which user made the prediction, for 
which movie?
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2 min



Example Suppose we have learned the following user and movie features 
using 2 features

Then we can predict what each user would rate each movie
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Unique 
Solution?

Is this problem well posed? Unfortunately, there is not a unique 
solution 

For example, assume we had a solution

Then doubling everything in 𝐿 and halving everything in 𝑅 is also 
a valid solution. The same is true for all constant multiples.
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Brain BreakBrain BreakBrain Break
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Coordinate 
Descent

27



Find ෠𝐿 & ෠𝑅 Remember, our quality metric is 

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Gradient descent is not used in practice to optimize this, since it is 
much easier to implement coordinate descent (i.e., Alternating 
Least Squares) to find ෠𝐿 and ෠𝑅
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Coordinate 
Descent

Goal: Minimize some function 𝑔 𝑤 = 𝑔(𝑤0, 𝑤1, … , 𝑤𝐷)

Instead of finding optima for all coordinates, do it for one 
coordinate at a time! 

To pick coordinate, can do round robin or 
pick at random each time.

Guaranteed to find an optimal solution
under some constraints

29

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ෝ𝑤 = 0 (𝑜𝑟 𝑠𝑚𝑎𝑟𝑡𝑙𝑦)
𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑:

𝑝𝑖𝑐𝑘 𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑗
ෝ𝑤𝑗= argmin

𝑤
𝑔(ෝ𝑤0 , … , ෝ𝑤𝑗−1 , 𝑤, ෝ𝑤𝑗+1 , … , ෝ𝑤𝐷 )



Coordinate 
Descent for 
Matrix 
Factorization

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Fix movie factors 𝑅 and optimize for 𝐿

෠𝐿 = argmin
𝐿

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

First key insight: users are independent! 

෠𝐿𝑢 = argmin
𝐿𝑢

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2
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Coordinate 
Descent for 
Matrix 
Factorization

෠𝐿𝑢 = argmin
𝐿𝑢

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣

2

Second key insight: this looks a lot like linear regression!

ෝ𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝑤 ⋅ ℎ 𝑥𝑖 − 𝑦𝑖
2

Takeaway: For a fixed 𝑅 , we can learn 𝐿 using linear regression, 
separately per user.

Conversely, for a fixed 𝐿, we can learn 𝑅 using linear regression, 
separately per movie.
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Overall 
Algorithm

Want to optimize

෠𝐿, ෠𝑅 = argmin
𝐿,𝑅

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠
෍

𝑢,𝑣:𝑟𝑢𝑣≠?

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix movie factors 𝑅, and optimize for user factors separately

▪ Step 1: Independent least squares for each user

෠𝐿𝑢 = argmin
𝐿𝑢

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑢
෍

𝑣∈𝑉𝑢

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Fix user factors, and optimize for movie factors separately

▪ Step 2: Independent least squares for each movie

෠𝑅𝑣 = argmin
𝑅𝑣

1

# 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑣
෍

𝑢∈𝑈𝑣

𝐿𝑢 ⋅ 𝑅𝑣 − 𝑟𝑢𝑣
2

Repeatedly do these steps until convergence (to local optima) 

System might be underdetermined: Use regularization 32



pollev.com/cs416

ThinkThinkThink

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user 
factors. Which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None

33

1.5 minutes



pollev.com/cs416

Group

34

3 minutes

Consider we had the ratings matrix

During one step of optimization, user and movie factors are

Two questions:

What is the current MSE loss? (number)

Assume the next step of coordinate descent updates the user 
factors. Which factors would change? 

▪ User 1

▪ User 2

▪ User 1 and 2

▪ None



What Has 
Matrix 
Factorization 
Learnt?

Matrix Factorization is a very versatile technique!

▪ Learns a latent space of topics that are most predictive of user 
preferences.

▪ Learns the “topics” that exist in movie 𝑣: ෠𝑅𝑣
▪ Learns the “topic preferences” for user 𝑢: ෠𝐿𝑢
▪ Predict how much a user 𝑢 will like a movie 𝑣

෣𝑅𝑎𝑡𝑖𝑛𝑔 𝑢, 𝑣 = ෠𝐿𝑢 ⋅ ෠𝑅𝑣

35

≈
Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X =Rating



Applications: 
Recommender 
Systems

Recommendations:  (Semi-Supervised)

▪ Use matrix factorization to predict user ratings on movies the user 
hasn’t watched

▪ Recommend movies with highest predicted rating

36

User Movie Rating



Applications: 
Topic 
Modeling

Topic Modeling: (Unsupervised)

▪ Treat the TF-IDF matrix as the user-item matrix
- Documents are ”users”
- Words are “items”

▪ 𝐿 tells us which topics are present in each document

▪ 𝑅 tells us what words each topic is composed of

▪ Oftentimes, the topics are interpretable!

▪ HW7 Programming: Tweet Topic Modeling

37

Xij known for black cells

Xij unknown for white cells

Rows index movies

Columns index users

X = ≈X L
R’

=

Application to text data:



Solution 4 
(Matrix 
Factorization) 
Pros / Cons

Pros:

▪ Personalizes to item and user!

▪ Learns latent features that are most predictive of user ratings.

Cons:

▪ Cold-Start Problem 
- What do you do about new users or items, with no 

data?

38



Common 
Issues with 
Recommender 
Systems

(and some solutions)
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Comparing 
Recommender 
Systems

41

Efficiency 
(Space, 
Deploy)

Efficiency 
(Time, 

Deploy)

Addresses 
Cold-
Start?

Personalizes 
to User?

Discovers 
Latent 

Features?

User-User

Item-Item

Feature-
Based

Matrix 
Factorization

Hybrid 
(Feature-
Based + 

Matrix 
Factorization)



Comparing 
Recommender 
Systems

42

Efficiency 
(Space, 
Deploy)

Efficiency 
(Time, 

Deploy)

Addresses 
Cold-
Start?

Personalizes 
to User?

Discovers 
Latent 

Features?

User-User 😟 😟 😟 😀 😟

Item-Item 😟 😀 😟 😟 😟

Feature-
Based 😀 😀 😀 😀 😟

Matrix 
Factorization 😐 😀 😟 😀 😀

Hybrid 
(Feature-
Based + 

Matrix 
Factorization)

😐 😀 😀 😀 😀



pollev.com/cs416

ThinkThinkThink

▪ You are a software engineer at Spotify and have developed a 
matrix-factorization based recommendation system. The 
system works very well on existing users and songs, but does 
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your 
recommender system to handle new songs/users?

43

1 min



pollev.com/cs416

Group

▪ You are a software engineer at Spotify and have developed a 
matrix-factorization based recommendation system. The 
system works very well on existing users and songs, but does 
not work on new users or new songs.

▪ How can you augment, extend, and/or modify your 
recommender system to handle new songs/users?
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2 min



Cold-Start 
Problem

When a new user comes in, we don’t know what items they like! 
When a new item comes into our system, we don’t know who 
likes it! This is called the cold start problem.

Addressing the cold-start problem (for new users):

▪ Give random predictions to a new user.

▪ Give the globally popular recommendations to a new user.

▪ Require users to rate items before using the service.

▪ Use a feature-based model (or a hybrid between feature-
based and matrix factorization) for new users.
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Top-K versus 
Diverse 
Recommend-
ations

46

Top-k recommendations might be very redundant

▪ Someone who likes Rocky I also will likely enjoy Rocky II, Rocky 
III, Rocky IV, Rocky V

Diverse Recommendations

▪ Users are multi-faceted & we want to hedge our bets

▪ Maybe recommend: Rocky II, Always Sunny in Philadelphia, 
Robin Hood

Solution: Maximal Marginal Relevance

▪ Pick recommendations one-at-a-time.

▪ Select the item that the user is most likely to like and that is 
most dissimilar from existing recommendations.

- Hyperparameter 𝜆 to trade-off between those objectives.



Feedback 
Loops / Echo 
Chambers

Users always get recommended similar content and are unable to 
discover new content they might like.

▪ Exploration-Exploitation Dilemma
- Common problem in “online learning” settings

▪ Pure Exploration: show users random content
- Users can discover new interests, but will likely be unsatisfied

▪ Pure Exploitation: show users content they’re likely to like
- Users can’t discover new interests.

▪ Solution: Multi-Armed Bandit Algorithms (beyond the scope of 416)
47

content users 
watch

their 
recommendations

influencesinfluences



Radicalization 
Pathways

In the real-world, recommender systems guide us along a path 
through the content in a service.

▪ If watch video 1, recommend video 2

▪ If watch video 2, recommend video 3

A 2019 study found that YouTube’s algorithms lead users to 
more and more radical content.

▪ “Intellectual Dark Web” ➔ Alt-Lite ➔ Alt-Right

▪ See more: iSchool 2021 Spring Lecture on Algorithmic Bias & 
Governance

Youtube’s response has been whack-a-mole. (Remove the 
content, manually tweak the recommendations for that topic)

A sustainable solution to this must incorporate both human 
values and technical innovation!

48

https://arxiv.org/abs/1908.08313
https://ischool.uw.edu/events/2021/05/ischool-spring-lecture-algorithmic-bias-and-governance
https://www.themantle.com/arts-and-culture/why-youtubes-decision-remove-far-right-content-not-enough


Evaluating 
Recommender 
Systems

49



MSE / 
Accuracy?

▪ It is possible to evaluate recommender systems using existing 
metrics we have learnt:

- MSE (if predicting ratings)
- Accuracy (if predicting like/dislike, or click/ignore)

▪ However, we don’t really care about accurately predicting 
what a user won’t like.

▪ Rather, we care about finding the few items they will like.

Instead, we focus on the following metrics:

▪ How many of our recommendations did the user like?

▪ How many of the items that the user liked did we 
recommend?

Sound familiar?
50



Precision -
Recall

Precision and recall for recommender systems

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

# 𝑠ℎ𝑜𝑤𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑙𝑖𝑘𝑒𝑑 & 𝑠ℎ𝑜𝑤𝑛

#𝑙𝑖𝑘𝑒𝑑

What happens as we vary the number of recommendations we make?

Best Recommender System:

▪ Top-1: high precision, low recall

▪ Top-k (large k): high precision, high recall

Average Recommender System:

▪ Top-1: average precision, low recall

▪ Top-k (large k): low precision, high recall
51



Precision -
Recall 
Curves
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Comparing 
Recommender 
Systems

In general, it depends

▪ What is true always is that for a given precision, we want 
recall to be as large as possible (and vice versa)

▪ What target precision/recall depends on your application

One metric: area under the curve (AUC)

Another metric: Set desired recall and maximize precision 
(precision at k)
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Recap

Now you know how to:

▪ Describe the input (observations, number of “topics”) and 
output (“topic” vectors, predicted values) of a matrix 
factorization model

▪ Implement a coordinate descent algorithm for optimizing the 
matrix factorization objective presented

▪ Compare different approaches to recommender systems

▪ Describe the cold-start problem and ways to handle it (e.g., 
incorporating features)

▪ Analyze performance of various recommender systems in 
terms of precision and recall 

▪ Use AUC or precision-at-k to select amongst candidate 
algorithms
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