This Week: Dimensionality Reduction, Recommender Systems
Next Week: Course Wrap-Up & Guest Panel

Deadlines:
- HW6 due TOMORROW, Tues 8/9 11:59PM
 - Submit Concept on Gradescope
 - Submit Programming on EdSTEM
- HW7 (final HW) released Wed 8/10
 - Due Tues 8/16 11:59PM, NO LATE DAYS
- LR 8 due Fri 8/12 11:59PM
- Extra Credit: Guest Panel Mon 8/15 during lecture.
- Take-Home Final Exam: Wed 8/17 – Thurs 8/18
 9AM – 11:59PM
Addressing LR Questions
1. “Fairness through Unawareness”
 1. To avoid unfair decisions, prevent the model from every looking at protected attribute (e.g., race, gender).
 2. *Doesn’t work in practice*

2. Statistical Parity
 1. Idea: Equal performance across groups.
 \[
 \Pr(\hat{Y} = +| A = \blacksquare) = \Pr(\hat{Y} = +| A = \bigcirc)
 \]
 2. Also phrased as matching demographic statistics (e.g., if 33% of population are Circles, 33% of those admitted should be Circles).

3. Equal Opportunity
 1. Idea: True positive rate should be equal across groups
 \[
 \Pr(\hat{Y} = +| A = \blacksquare, Y = +) = \Pr(\hat{Y} = +| A = \bigcirc, Y = +)
 \]
Statistical Parity Example

Predict positive $\iff y = +1$
Equality of Opportunity Example

TPR = \(\frac{t}{q} \)

TPR = \(\frac{u}{q} \)
Unsupervised Learning

- A type of machine learning that detects underlying patterns in **unlabeled** data.

- Examples of unsupervised learning tasks:
 - Cluster similar articles together.
 - Cluster gene sequences.
 - Recommend items, searches, movies, etc.
In many real world contexts, there aren’t clearly defined labels so we won’t be able to do classification.

We will need to come up with methods that uncover structure from the (unlabeled) input data X.

Clustering is an automatic process of trying to find related groups within the given dataset.

Input: x_1, x_2, \ldots, x_n

Output: z_1, z_2, \ldots, z_n
"Sushi was great, the food was awesome, but the service was terrible"

"Terrible food; the sushi was rancid."

Which word(s) have the largest IDF? Which word(s) have the smallest IDF?

<table>
<thead>
<tr>
<th>Review</th>
<th>“Sushi was great, the food was awesome, but the service was terrible”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Terrible food; the sushi was rancid.”</td>
<td></td>
</tr>
</tbody>
</table>

Note that if we divide the Bag of Words embedding by the num words in the document, we get the TF!
Coordinate Descent

k-means is trying to minimize the heterogeneity objective

$$\text{argmin}_{z, \mu} \sum_{j=1}^{k} \sum_{i=1}^{n} 1\{z_i = j\} \left\| \mu_j - x_i \right\|_2^2$$

Step 0: Initialize cluster centers

Repeat until convergence:

Step 1: Assign each example to its closest cluster centroid

Step 2: Update the centroids to be the mean of all the points assigned to that cluster

Coordinate Descent alternates how it updates parameters to find minima. On each of iteration of Step 1 and Step 2, heterogeneity decreases or stays the same.

=> Will converge in finite time
Finding Shapes

k-means

Mixture Models

Hierarchical Clustering
Dendrogram

- x-axis shows the datapoints (arranged in a very particular order)
- y-axis shows distance between pairs of clusters

Cluster distance between the 2 clusters that were merged

Height here indicates min distance between blue pts and green pts (2 clusters)
Cut Dendrogram

Choose a distance D^* to “cut” the dendrogram
- Use the largest clusters with distance $< D^*$
- Usually ignore the idea of the nested clusters after cutting
Dimensionality Reduction
Large Dimensionality

Input data might have thousands or millions of dimensions!

- **Images**: 200x200 image is 120,000 features!
- **Text**: \# features = \# n-grams 😊
- **Course Success**: dozen(s) of features HW 9
- **User Ratings**: 100s of ratings (one per rate-able item)

<table>
<thead>
<tr>
<th>Area Abbreviation</th>
<th>Area Code</th>
<th>Area</th>
<th>Item Code</th>
<th>Item Description</th>
<th>Element Code</th>
<th>Element</th>
<th>Unit</th>
<th>latitude</th>
<th>longitude</th>
<th>Year 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AF</td>
<td>2</td>
<td>2511</td>
<td>Wheat and products</td>
<td>5142</td>
<td>Food</td>
<td>1000 tonnes</td>
<td>33.94</td>
<td>67.71</td>
<td>3249.0</td>
</tr>
<tr>
<td>1</td>
<td>AF</td>
<td>2</td>
<td>2805</td>
<td>Rice (Milled Equivalent)</td>
<td>5142</td>
<td>Food</td>
<td>1000 tonnes</td>
<td>33.94</td>
<td>67.71</td>
<td>419.0</td>
</tr>
<tr>
<td>2</td>
<td>AF</td>
<td>2</td>
<td>2513</td>
<td>Barley and products</td>
<td>5521</td>
<td>Feed</td>
<td>1000 tonnes</td>
<td>33.94</td>
<td>67.71</td>
<td>58.0</td>
</tr>
<tr>
<td>3</td>
<td>AF</td>
<td>2</td>
<td>2513</td>
<td>Barley and products</td>
<td>5142</td>
<td>Food</td>
<td>1000 tonnes</td>
<td>33.94</td>
<td>67.71</td>
<td>185.0</td>
</tr>
<tr>
<td>4</td>
<td>AF</td>
<td>2</td>
<td>2514</td>
<td>Maize and products</td>
<td>5521</td>
<td>Feed</td>
<td>1000 tonnes</td>
<td>33.94</td>
<td>67.71</td>
<td>120.0</td>
</tr>
</tbody>
</table>
Issues with Too Many Dimensions

- **Visualization**: Hard to visualize more than 3D.
- **Overfitting**: Greater risk of overfitting with more features/dimensions
- **Scalability**: Some ML approaches (e.g., k-nn, k-means) perform poorly in high-dimensional spaces (curse of dimensionality)
- **Redundancy**: High-dimensional data often occupies a lower-dimensional subspace.
 - Most pixels in MNIST (digit recognition) are white – are they necessary? Only need 5 dimensions
 - Image Compression

![Original (400-dim)](image1.png) ![Compressed (40-dim)](image2.png)
Dimensionality Reduction is the task of representing the data with a fewer number of dimensions, while keeping meaningful relations between data.
Example: Embed high dimensional data in low dimensions to visualize the data

- Goal: Similar images should be near each other.
Example: Embedding Words
Example: Embedding Words

Names

Geographic Regions

Months
One very popular dimensionality reduction algorithm is called Principal Component Analysis (PCA).

Idea: Use a linear projection from d-dimensional data to k-dimensional data $k < d$

- E.g. 1000 dimension word vectors to 3 dimensions

Choose the projection that minimizes reconstruction error

- Idea: The information lost if you were to "undo" the projection
Principal Component Analysis (PCA)

Regions with no data. Data exists close to a lower-dimensional subspace.
Linear Projection

Project data into 1 dimension along a line

\[z_i = u_i^T x_i = \sum_{j=1}^{0} u_i[j] \cdot x_i[j] \]
Reconstruction

Reconstruct original data only knowing the projection

\[z_i \text{ is 10} \]
\[\hat{z}_i \text{ is 20 vector} \]
\[\hat{x}_i = z_i \cdot y_i \]

Reconstruction Error

\[\| \hat{x}_i - x_i \|_2^2 \]
Compute the 2D coordinates of the following point. Then compute its reconstruction error.

- \(x_i = [0, -7, 3, 2, 5] \)
- \(u_1 = [-0.5, 0, 0.5, -0.5, 0.5] \)
- \(u_2 = [0.5, 0, 0.5, -0.5, -0.5] \)
- \(z_i = ?? \)
- \(\hat{x}_i = ?? \)
- \(\|\hat{x}_i - x_i\|_2^2 = ?? \)
Compute the 2D coordinates of the following point. Then compute its reconstruction error.

\[x_i = [0, -7, 3, 2, 5] \]

\[u_1 = [-0.5, 0, 0.5, -0.5, 0.5] \]

\[u_2 = [0.5, 0, 0.5, -0.5, -0.5] \]

\[z_i = ?? \begin{bmatrix} 3 \\ -2 \end{bmatrix} \]

\[\hat{x}_i = \sum_{j=1}^{5} u_j \cdot x_j \]

\[\hat{x}_1 = \frac{1}{2} \cdot 0 + 0 \cdot (-7) + \frac{3}{2} \cdot 3 - \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 5 = 3 \]

\[\hat{x}_2 = \frac{1}{2} \cdot 0 + 0 \cdot (-7) + \frac{3}{2} \cdot 3 - \frac{1}{2} \cdot 2 - \frac{1}{2} \cdot 5 = -2 \]

\[\hat{x}_1 = \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2} \]

\[\hat{x}_2 = [-1, 0, -1, 1, 1] \]

\[\hat{x}_i = \begin{bmatrix} -2.5, 0, 0.5, -0.5, 2.5 \end{bmatrix} = \begin{bmatrix} -2.5, 0, 0.5, -0.5, 2.5 \end{bmatrix} \]

\[\| \hat{x}_i - x_i \|^2 = \| [-2.5 - 0, 0 + 7, 0.5 - 3, -0.5 - 5, 2.5 - 5] \|^2 = 74 \]
Think of PCA as giving each datapoint a new “address.”

- Earlier, you could find the datapoint by going to the location \((x, y, z)\).
- Now, if you are just moving in the projection plane, you can (approximately) find the datapoint by going to the location \((u_1, u_2)\).
How do we find the best projection vector(s)?

Pick the vector(s) along which the datapoints have the most variation!
Eigenvectors

- There is a quantity in linear algebra that does exactly that!
- The eigenvectors of a d-dimensional dataset* are a collection of d perpendicular vectors that point in the directions of greatest variation amongst the points in the dataset.

- Eigenvectors rotate the axes of the d dimensional space.

* (caveat) the eigenvectors are actually associated with the covariance matrix of the dataset
Eigenvalues

- Each eigenvector has a corresponding **eigenvalue**, indicating how much the dataset varies in that direction.
- Greater eigenvalue \Rightarrow greater variance.

PCA: Take the k eigenvectors with greatest eigenvalues.
PCA Algorithm

Input Data: An $n \times d$ data matrix X
- Each row is an example
- Desired k (lower dimensions)

1. **Center Data:** Subtract mean from each row
 \[X_c \leftarrow X - \bar{X}[1:d] \]

2. **Compute spread/orientation:** Compute covariance matrix Σ
 \[\Sigma[t,s] = \frac{1}{n} \sum_{i=1}^{n} x_{c,i}[t] x_{c,i}[s] \]

3. **Find basis for orientation:** Compute eigenvectors of Σ
 - Select k eigenvectors u_1, \ldots, u_k with largest eigenvalues

4. **Project Data:** Project data onto principal components
 \[z_i[1] = u_1^T x_{c,i} = u_1[1] x_{c,i}[1] + \cdots + u_1[d] x_{c,i}[d] \]
 \[\cdots \]
 \[z_i[k] = u_k^T x_{c,i} = u_k[1] x_{c,i}[1] + \cdots + u_k[d] x_{c,i}[d] \]
Reconstructing Data

Using principal components and the projected data, you can reconstruct the data in the original domain.

\[\hat{x}_i[1:d] = \bar{X}[1:d] + \sum_{j=1}^{k} z_i[j] u_j \]
Example: Eigenfaces

Each image is 16x16 = 256

Apply PCA to face data

\[X = 64 \cdot 256 \]

Input Data

Principal Components

\[z = 64 \cdot 25 \]
Depending on context, it may make sense to look at either original data or projected data.

In this case, let’s see how the original data looks after using more and more principal components for reconstruction.

- Each image shows additional 8 principal components
Other times, it does make sense to look at the data in the projected space! (Usually if $k \leq 3$)
Genes

Dataset of genes of Europeans (3192 people; 500,568 loci) and their country of origin, ran PCA on the data and plotted 2 principal components.
Brain Break
Consider the genetic data projected onto its top two PCs. How would you interpret PC1 and PC2?

![Genetic Data from different populations projected onto its top two PCs.](image)
Consider the genetic data projected onto its top two PCs. How would you interpret PC1 and PC2?
General Steps to Take as an ML Practitioner

Given a new dataset:

- Split into train and test sets.
- Understand the dataset:
 - Understand the feature/label types and values
 - Visualize the data: scatterplot, boxplot, PCA, clustering
- Use that intuition to decide:
 - What features to use, and what transformations to apply to them (pre-processing).
 - What model(s) to train.
- Train the models, evaluate them using a validation set or cross-validation.
- Deploy the best model.
Intro to Recommender Systems
Recommender Systems are Everywhere
You have n users and m items in your system
- Typically, $n \gg m$. E.g., Youtube: 2.6B users, 800M videos
- Based on the content, we have a way of measuring user preference.
- This data is put together into a user-item interaction matrix.

Task: Given a user u_i or item v_j, predict one or more items to recommend.
Solution 0: Popularity
Solution 0: Popularity

Simplest Approach: Recommend whatever is popular

- Rank by global popularity (i.e., Squid Game)
Solution 0 (Popularity) Pros / Cons

Pros:
- Easy to implement

Cons:
- No Personalization
- Feedback Loops
- Top-K recommendations might be redundant
 - e.g., when a new Harry Potter movie is released, the others may also jump into top-k popularity.
Solution 1: Nearest User

Concerned parents: if all your friends jumped into the fire would you follow them?

Machine learning algorithm:
Solution 1: Nearest User (User-User)

User-User Recommendation:
- Given a user u_i, compute their k nearest neighbors.
- Recommend the items that are most popular amongst the nearest neighbors.
Think

1 min

- What do you see as pros / cons of the nearest user approach to recommendations?

Tell me about your friends(*who your neighbors are*) and I will tell you who you are.
What do you see as pros / cons of the nearest user approach to recommendations?

Tell me about your friends(*who your neighbors are*) and *I will tell you who you are.*
Solution 1
(User-User)
Pros / Cons

Pros:
- Personalized to the user.

Cons:
- Nearest Neighbors might be too similar
 - This approach only works if the nearest neighbors have interacted with items that the user hasn’t.
- Feedback Loop (Echo Chambers)
- Scalability
 - Must store and search through entire user-item matrix
- Cold-Start Problem
 - What do you do about new users, with no data?
Solution 2: “People Who Bought This Also Bought…”

Item-Item
Solution 2: “People Who Bought This Also Bought...” (Item-Item)

Item-Item Recommendation:

- Create a co-occurrence matrix $C \in \mathbb{R}^{m \times m}$ (m is the number of items). $C_{ij} = \#$ of users who bought both item i and j.
- For item i, predict the top-k items that are bought together.

\[
C_{ii} = \text{total } \# \text{ users who bought item } i
\]

<table>
<thead>
<tr>
<th>Items</th>
<th>Sunglasses</th>
<th>Baby Bottle</th>
<th>Diapers</th>
<th>Swim Trunks</th>
<th>Baby Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunglasses</td>
<td>500</td>
<td>15</td>
<td>...</td>
<td>9</td>
<td>130</td>
</tr>
<tr>
<td>Baby Bottle</td>
<td>15</td>
<td>45</td>
<td>...</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Diapers</td>
<td>9</td>
<td>6</td>
<td>...</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Swim Trunks</td>
<td>130</td>
<td>10</td>
<td>...</td>
<td>9</td>
<td>200</td>
</tr>
<tr>
<td>Baby Formula</td>
<td>20</td>
<td>10</td>
<td>...</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Problem: popular items drown out the rest!

Solution: Normalizing using Jaccard Similarity.

\[
S_{ij} = \frac{\# \text{ purchased } i \text{ and } j}{\# \text{ purchased } i \text{ or } j} = \frac{C_{ij}}{C_{ii} + C_{jj} - C_{ij}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Sunglasses</th>
<th>Baby Bottle</th>
<th>...</th>
<th>Diapers</th>
<th>Swim Trunks</th>
<th>Baby Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunglasses</td>
<td>1.00</td>
<td>0.03</td>
<td>...</td>
<td>0.02</td>
<td>0.23</td>
<td>0.04</td>
</tr>
<tr>
<td>Baby Bottle</td>
<td>0.03</td>
<td>1.00</td>
<td>...</td>
<td>0.09</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diapers</td>
<td>0.02</td>
<td>0.09</td>
<td>1.00</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Swim Trunks</td>
<td>0.23</td>
<td>0.04</td>
<td>...</td>
<td>1.00</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Baby Formula</td>
<td>0.04</td>
<td>0.12</td>
<td>...</td>
<td>0.08</td>
<td>0.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Normalizing Co-Occurrence Matrices
Incorporating Purchase History

What if I know the user u has bought a baby bottle and formula?

Idea: Take the average similarity between items they have bought

$$Score(u, diapers) = \frac{S_{diapers, baby bottle} + S_{diapers, baby formula}}{2}$$

Could also weight them differently based on recency of purchase!

Then all we need to do is find the item with the highest average score!
What do you see as pros / cons of the item-item approach to recommendations?
What do you see as pros / cons of the item-item approach to recommendations?
Pros:
- Personalizes to item (incorporating purchase history also personalizes to the user)

Cons:
- Can still suffer from feedback loops
 - (As can all recommender systems – but in some cases it’s worse than others)
- Scalability (must store entire item-item matrix)
- Cold-Start Problem
 - What do you do about new items, with no data?
Solution 3: Feature-Based

Will pick up here on Wed
Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

<table>
<thead>
<tr>
<th>Genre</th>
<th>Year</th>
<th>Director</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>1994</td>
<td>Quentin Tarantino</td>
<td>...</td>
</tr>
<tr>
<td>Sci-Fi</td>
<td>1977</td>
<td>George Lucas</td>
<td>...</td>
</tr>
</tbody>
</table>

Define weights on these features for all users (global)

\[w_G \in \mathbb{R}^d \]

Fit linear model
Solution 3: Feature-Based

What if we know what factors lead users to like an item?

Idea: Create a feature vector for each item. Learn a regression model!

<table>
<thead>
<tr>
<th>Genre</th>
<th>Year</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>1994</td>
<td>Quentin Tarantino</td>
</tr>
<tr>
<td>Sci-Fi</td>
<td>1977</td>
<td>George Lucas</td>
</tr>
</tbody>
</table>

Define weights on these features for all users (global) $w_G \in \mathbb{R}^d$

Fit linear model

$$\hat{r}_{uv} = w_G^T h(v) = \sum_i w_{G,i} h_i(v)$$

$$\hat{w}_G = \arg\min_w \frac{1}{\#\text{ratings}} \sum_{u,v:r_{uv} \neq ?} (w_G^T h(v) - r_{uv})^2 + \lambda \|w_G\|$$
Personalization: Option A

Add user-specific features to the feature vector!

<table>
<thead>
<tr>
<th>Genre</th>
<th>Year</th>
<th>Director</th>
<th>Gender</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>1994</td>
<td>Quentin Tarantino</td>
<td>F</td>
<td>25</td>
</tr>
<tr>
<td>Sci-Fi</td>
<td>1977</td>
<td>George Lucas</td>
<td>M</td>
<td>42</td>
</tr>
</tbody>
</table>
Personalization: Option B

Include a user-specified deviation from the global model.

\[\hat{r}_{uv} = (\hat{w}_G + \hat{w}_u)^T h(v) \]

Start a new user at \(\hat{w}_u = 0 \), update over time.
- OLS on the residuals of the global model
- Bayesian Update (start with a probability distribution over user-specific deviations, update as you get more data)
Think

Will feature-based recommender systems suffer from the cold start problem? Why or why not?

What about other pros/cons of feature-based?
- Will feature-based recommender systems suffer from the cold start problem? Why or why not?
- What about other pros/cons of feature-based?
Solution 3
(Feature-Based) Pros / Cons

Pros:
- No cold-start issue!
 - Even if a new user/item has no purchase history, you know features about them.
- Personalizes to the user and item.
- Scalable (only need to store weights per feature)
- Can add arbitrary features (e.g., time of day)

Cons:
- Hand-crafting features is very tedious and unscalable 😞
Recap

Dimensionality Reduction & PCA:
- Why and when it’s important
- High level intuition for PCA
- Linear Projections & Reconstruction
- Eigenvectors / Eigenvalues

Recommender Systems:
- Sol 0: Popularity
- Sol 1: Nearest User (User-User)
- Sol 2: “People who bought this also bought” (item-item)
- Sol 3: Feature-Base

Next Time (Rec System Continued):
- Sol 4: Matrix Factorization
- Sol 5: Hybrid Model
- Addressing common issues with Recommender Systems
- Evaluating Recommender Systems