CSE/STAT 416

Convolutional Neural Networks

Amal Nanavati University of Washington July 27, 2022

Adapted from Hunter Schafer's slides

Administrivia

Timeline:

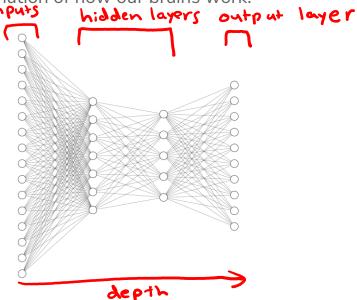
- Next Week: Clustering
- Following Week: Dimensionality Reduction, Recommender Systems
- Then: Course Recap & Final

Deadlines:

- HW5 released TODAY, due Tues 8/2 11:59PM
- Learning Reflection 6 due Fri, 7/29 11:59PM

HW5

- Nobody
- Google Colab:

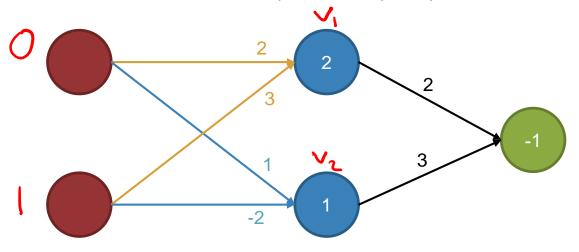


Recap: Neural Networks

Deep Learning

A lot of the buzz about ML recently has come from recent advancements in **deep learning**.

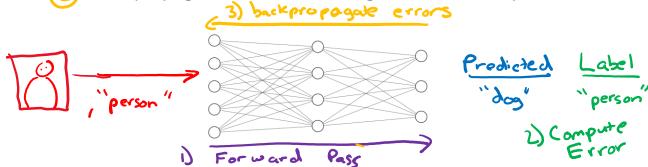
When people talk about "deep learning" they are generally talking about a class of models called **neural networks** that are a loose approximation of how our brains work.



Think &

2 mins

Compute the output for input (0, 1). There is a sign activation function on the hidden layers and output layer.

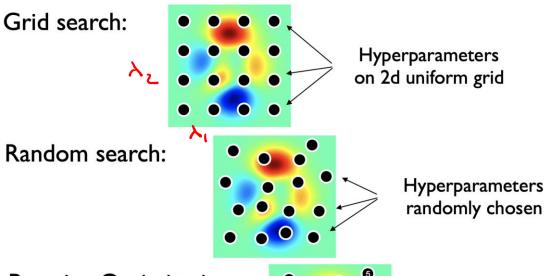

$$V_1 = \text{Sign}(2+2.0+3.1) = \text{Sign}(5) = 1$$

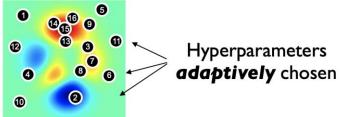
 $V_2 = \text{Sign}(1+1.0-2.1) = \text{Sign}(-1) = 0$
 $Y = \text{Sign}(-1+2.1+3.0) = \text{Sign}(1) = 1$

Backpropagation

What does gradient descent do in general? Have the model make predictions and update the model in a special way such that the new weights have lower error.

To do gradient descent with neural networks, we generally use **backpropagation.**

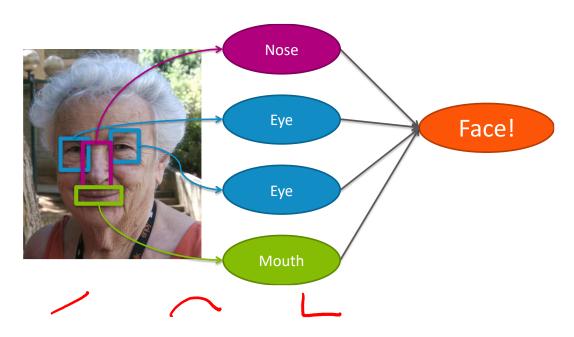

- Do a forward pass of the data through the network to get predictions
- Compare predictions to true values
- Backpropagate errors so the weights make better predictions



Hyperparameter Optimization

How do we choose hyperparameters to train and evaluate?

Bayesian Optimization:

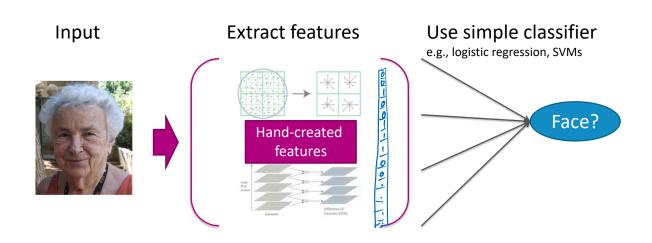


Applying NNs to Computer Vision

Image Features

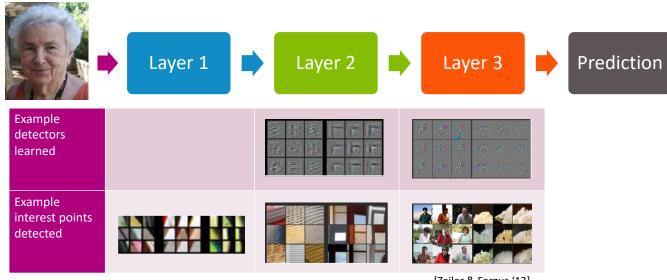
Features in computer vision are local detectors

Combine features to make prediction


In reality, these features are much more low level (e.g. Corner?)

The Past

A popular approach to computer vision was to make hand-crafted features for object detection



Relies on coming up with these features by hand (yuck!)

NNs to the Rescue

Neural Networks implicitly find these low level features for us!

[Zeiler & Fergus '13]

Each layer learns more and more complex features

Poll Everywhere

Think &

1 min 0a11-E2:3.5B

Dall-E: 12B

pollev.com/cs416

The models we have seen so far have
 ≤ 100 parameters (weights, biases).
 How many parameters do you think DALL-E Mini has?

(c) 12B

(d) 90B

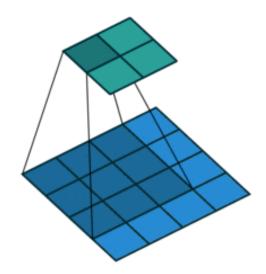
(e) 175B

https://www.craiyon.com/ (formerly Dall-E Mini)

Image Challenges

Images are extremely high dimensional / width heighth

- CIFAR-10 dataset are very small: 3@32x32
 - #inputs: 3.32.32=3072 input neurons Hidden Layer of Size 4: 3072-4+4= 12, 291 parameters
- For moderate sized images: 3@200x200
 - # inputs:


Images are structured, we should leverage this

Convolutional Neural Networks

Idea: Reduce the number of weights that need to be learned by looking at local neighborhoods of image.

Use the idea of a **convolution** to reduce the number of inputs by combing information about local pixels.

Convolution

Use a **kernel** that slides across the image, computing the sum of the element-wise product between the kernel and the overlapping part of the image

Image

30	3	22	1	0
02	02	10	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

Kernel

0	1	2
2	2	0
0	1	2
	2	2 2

Convolution

The input image (blue), the kernel (dark blue, numbers lower right) slide over the image to produce a result (green)

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

Convolution

End of one convolution with a particular Kernel

The input image (blue), the kernel (dark blue, numbers lower right) slide over the image to produce a result (green)

3	3	2	1	0
0	0	1	3	1
3	1	20	2_{1}	3_2
2	0	02	22	2_0
2	0	00	0,	1_2

12	12	17
10	17	19
9	6	14

Special Kernels

The numbers in the kernels determine special properties

Maintains same image

Identity

Edge Detection

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Box Blur

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Convolutional Neural Networks (CNNs) learn the right weights for each kernel they use! Generally not interpretable!

Hyperparameters of a Single Convolution

You can specify a few more things about a kernel

Kernel dimensions

- 545, 3×3, 10 × 10
- Padding size and padding values
- Stride (how far to jump) values

For example, a 3x3 kernel applied to a 5x5 image with 1x1 zero padding and a 2x2 stride

02	00	0,	0	0	0	0
0,	2_0	2_0	3	3	3	0
00	0,	1,	3	0	3	0
0	2	3	0	1	3	0
0	3	3	2	1	2	0
0	3	3	0	2	3	0
	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

Think &

1.5 min

What is the result of applying a convolution using this kernel on this input image?

Use 1x1 zero padding and a 2x2 stride

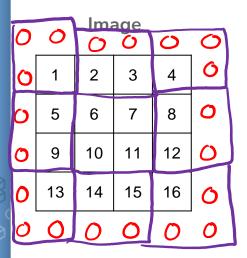
Image

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Kernel

1	1
0	2

Poll Everywhere


Group 222

3 min

What is the result of applying a convolution using this kernel on this input image?

Use 1x1 zero padding and a 2x2 stride

Resul	1+	•	3	+	3
Kesu	17	•		•	

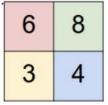
Kernel

1	1	12	6	0
0	2	23	35	8
		13	29	16/

Convolutional Neural Networks

Pooling

Another core operation that is similar to a convolution is a **pool**.

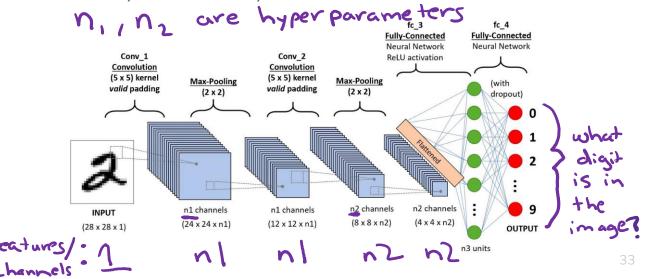

- Idea is to down sample an image using some operation
- Combine local pixels using some operation (e.g. max, min, average, median, etc.)

Typical to use **max pool** with 2x2 filter and stride 2

Tends to work better than average pool

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

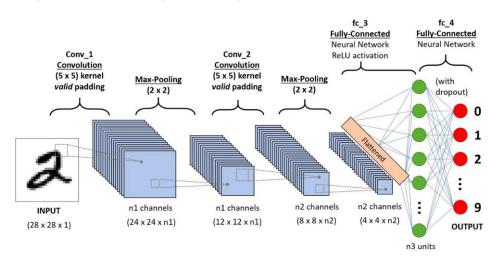
max pool with 2x2 filters and stride 2



Convolutional Neural Network

Combine convolutions and pools into pre-processing layers on image to learn a smaller, information dense representation.

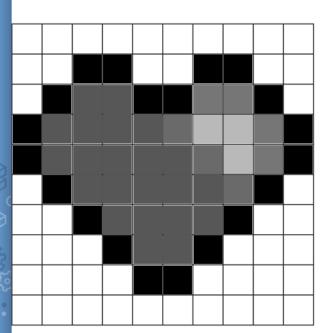
Example architecture for hand-written digit recognition

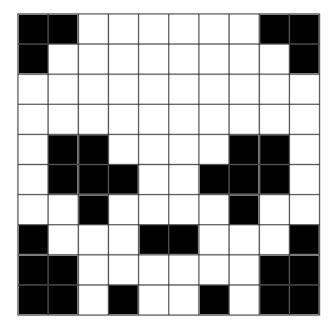

- Each convolution section uses many different kernels (increasing depth of channels)
- Pooling layers downsample each channel separately
- Usually ends with fully connected neural network

Convolutional Neural Network

Why does this help?

- Only need to learn a small number of values (kernel weights)
 that get applied to the entire image region by region
 - This is called weight-sharing
 - Gives efficiency + shift invariance
- Pooling lets us focus on features from larger and larger regions of the original image.

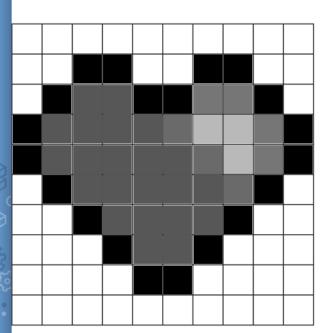


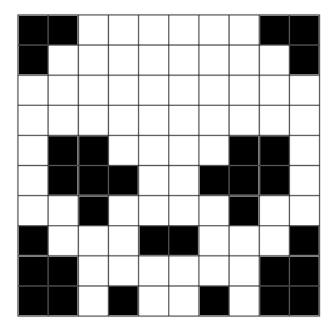


Think &

2 min

- Input: 10x10x1 image (grayscale image of 10x10 pixels)
- Convolution: 5x5 kernel, stride 1
- MaxPool: 2x2, stride 2
- What is the size of the resulting image?

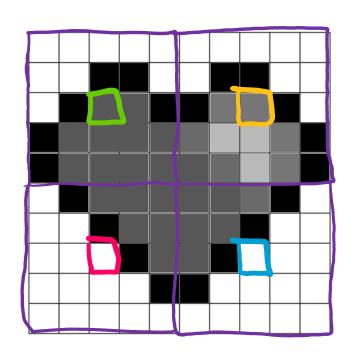


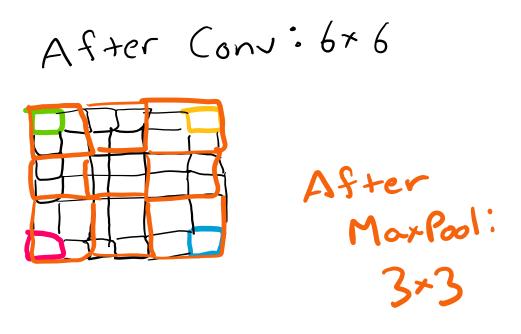

Poll Everywhere

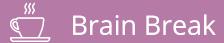
Group & & &

2 min

- Input: 10x10x1 image (grayscale image of 10x10 pixels)
- Convolution: 5x5 kernel, stride 1
- MaxPool: 2x2, stride 2
- What is the size of the resulting image?



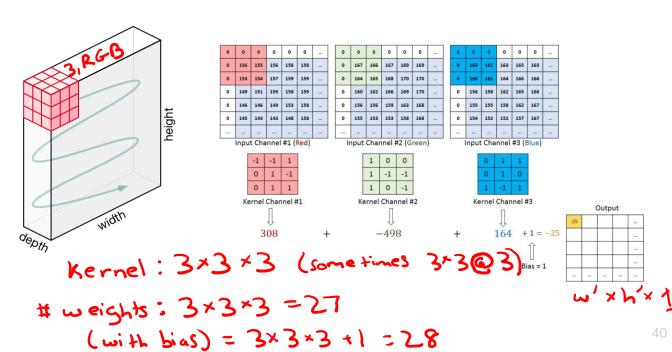

Input: 10x10x1 image (grayscale image of 10x10 pixels)


Convolution: 5x5 kernel, stride 1

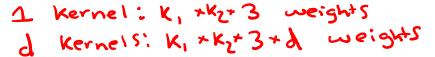
MaxPool: 2x2, stride 2

What is the size of the resulting image?

3:28

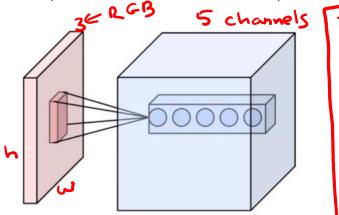


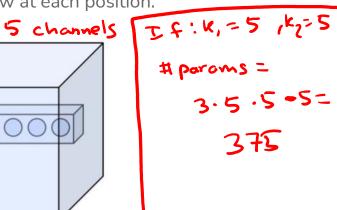
Number of Weights / Parameters


CNN with Color Images

How does this work if there is more than one input channel?

Usually, use a 3 dimensional tensor as the kernel to combine information from each input channel

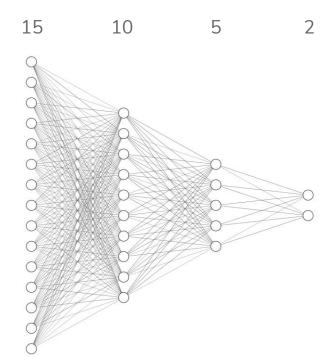

CNN with Color Images



Another way of thinking about this process is each kernel is a (hidden-layer) neuron that looks at the kernel-size pixels in a neighborhood

If there are 5 output channels in a conv layer, only need to learn the weights for the 5 neurons

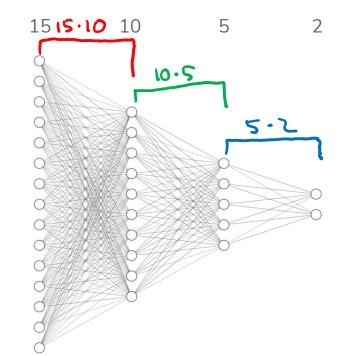
These neurons are a bit different since they look at the pixels that overlap with the window at each position.

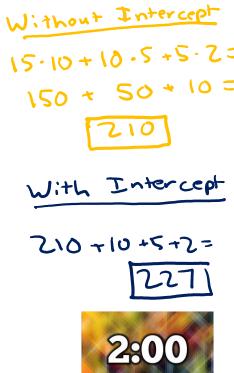

Think &

1 min

Consider a fully connected neural network below, how many weights need to be learned?

Completely ignore intercept (bias) terms

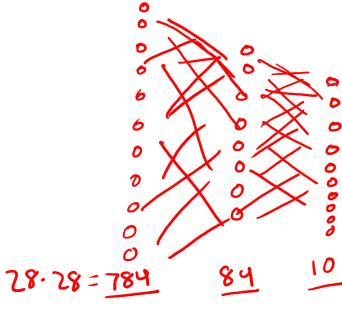



Group & & & &

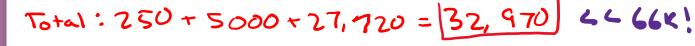
2 min

Consider a plain neural network below, how many weights need to be learned?

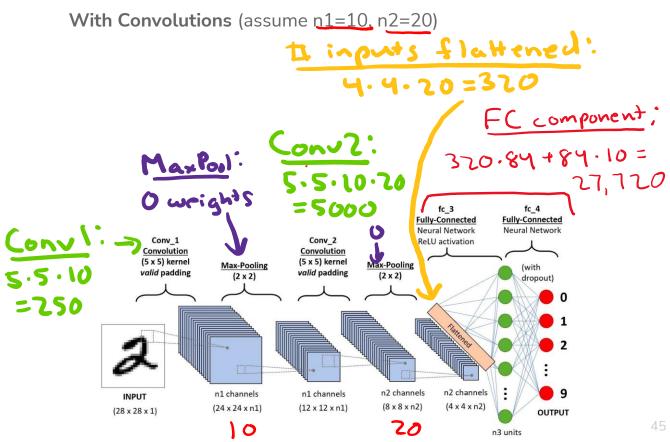
Completely ignore intercept terms



Weight Sharing


Consider solving a digit recognition task on 28x28 images. Suppose I wanted to use a fully connected hidden layer with 84 neurons

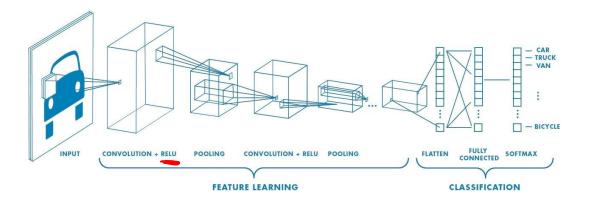
Without Convolutions:



Num Wetghls:

Weight Sharing

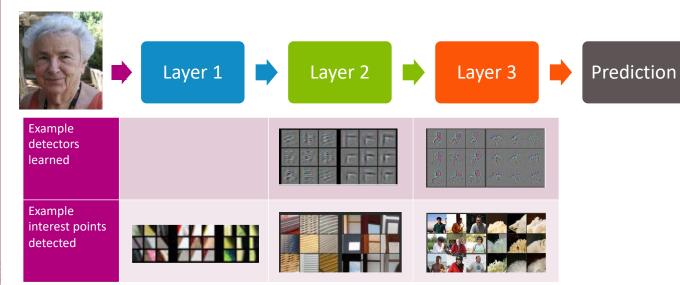
Consider solving a digit recognition task on 28x28 images. Suppose I wanted to use a fully connected hidden layer with 84 neurons



CNN
Applications
& Transfer
Learning

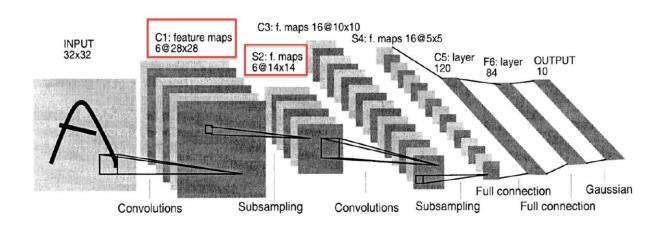
General CNN Architecture

CNNs generally (not always) have architectures that look like the following


- A series of Convolution + Activation Functions and Pooling layers. It's very common to do a pool after each convolution.
- Each set of operations lowers the size of the image but increases the number of features.
- Then after some number of these operations, flatten the image to work with the final neural network

Features

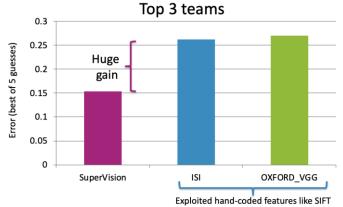
The learned kernels are exactly the "features" for computer vision!


They start simple (corners, edges) and get more complex after more layers

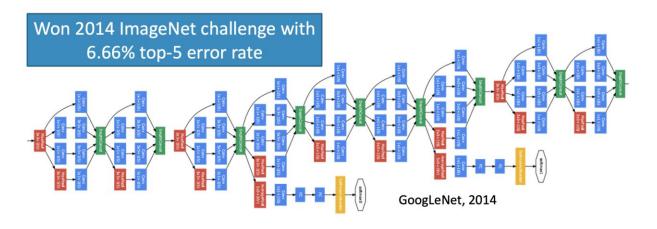
CNNs have had remarkable success in practice

LeNet, 1990s

LeNet made 82 errors on MNIST (popular hand-written digit dataset of size 60K). 99.86% accuracy



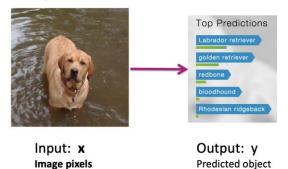
ImageNet 2012 competition:

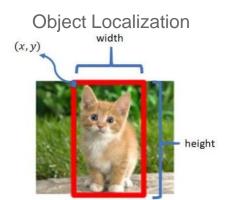

- 1.2M training images
- 1000 categories

Winner: SuperVision

- 8 layers, 60M parameters [Krizhevsky et al. '12]
- Top-5 Error: 17%

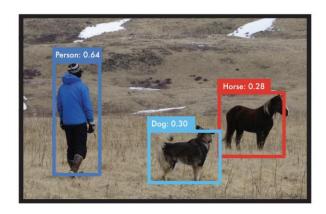
Max pooling Max pooling pooling




Huge CNN depth has proven helpful in recognition systems... Maybe because images contain hierarchical structure (faces contain eyes contain edges, etc.)

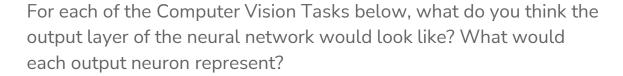
Applications

Image Classification


Scene Parsing [Farabet et al. '13]

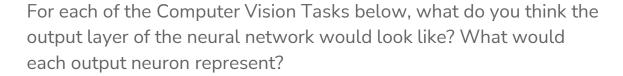
Applications

Object Detection [Redmon et al. 2015] (http://pjreddie.com/yolo/)


Product Recommendation

Think &

1.5 mins


- Image Classification: Given an image with a single object, output the class of the object.
- **Object Localization**: Given an image with a single object, output the class **and** bounding box (x,y,w,h) of the object.
- Object Detection: Given an image with possibly multiple objects, output the bounding box **and** class for **each** object.

Group 222

3 min

- Image Classification: Given an image with a single object, output the class of the object.
- **Object Localization**: Given an image with a single object, output the class **and** bounding box (x,y,w,h) of the object.
- Object Detection: Given an image with possibly multiple objects, output the bounding box and class for each object.

Image Classification: Given an image with a single object, output the class of the object.

Output Layer: C neurons, C is # classes · each neuron represents probability that the image is

of that

class

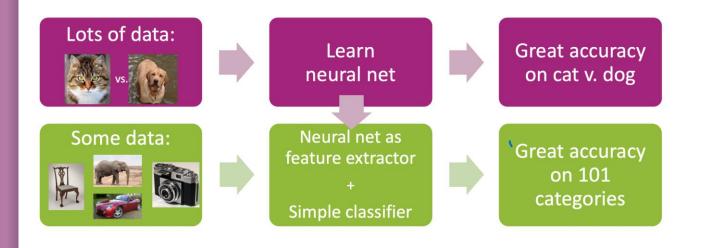
Object Localization: Given an image with a single object, output the class and bounding box (x,y,w,h) of the object.

Output Layer:

C+ 4 neurons,

first Care

same


A so have

w, h, Cx, Cy

Object Detection: Given an image with possibly multiple objects, output the bounding box **and** class for **each** object.

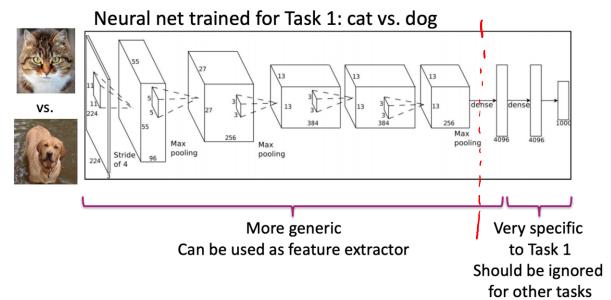
Search Youtube for the YOLO algorithm explained!

A Tale of 2 Tasks

If we don't have a lot of data for Task 2, what can we do?

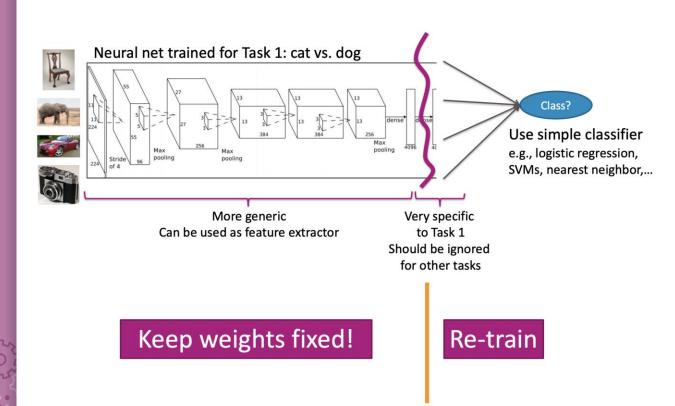
Idea: Use a model that was trained for one task to help learn another task.

An old idea, explored for deep learning by Donahue et al. '14 & others



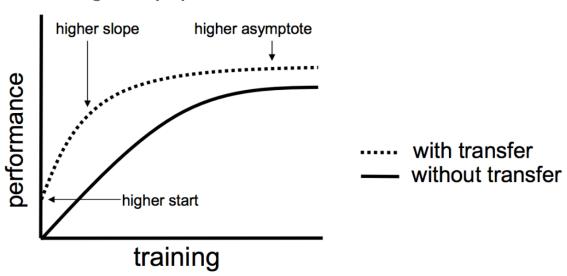
CNNs

What is learned in a neural network?


Initial layers are low-level and very general.

Usually not sensitive/specific to the task at hand

Transfer Learning


Share the weights for the general part of the network

Transfer Learning

If done successfully, transfer learning can really help. Can give you

- A higher start
- A higher slope
- A higher asymptote

Deep Learning in Practice

Pros

No need to manually engineer features, enable automated learning of features

Impressive performance gains

- Image processing
- Natural Language Processing
- Speech recognition

Making huge impacts in most fields

Cons

Requires a LOT of data

Computationally really expensive

Environmentally, extremely expensive (<u>Green AI</u>)

Hard to tune hyper-parameters

- Choice of architecture (we've added even more hyperparameters)
 - Size of kernels, stride, 0 padding, number of conv layers, depth of outputs of conv layers,
- Learning algorithm

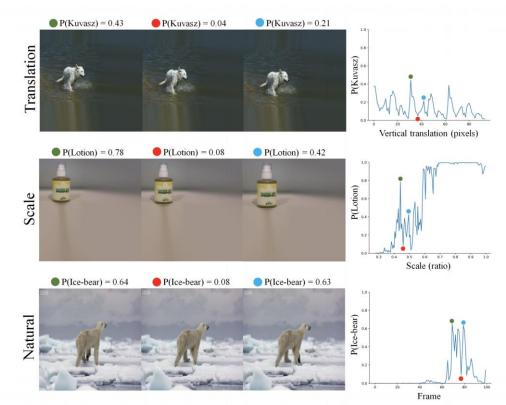
Still not very interpretable

NN Failures

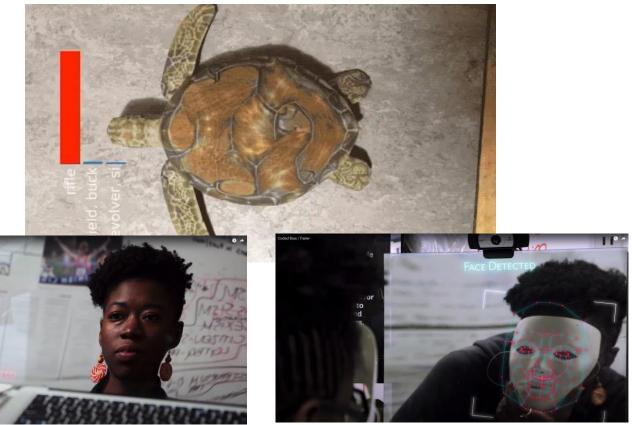
While NNs have had amazing success, they also have some baffling failures.

"panda" 57.7% confidence

"No one adds noise to things in real applications"


Not true!

- Hackers will hack
- Sensors (cameras) are noisy!


NN Failures

They even fail with "natural" transformations of images [Azulay, Weiss https://arxiv.org/abs/1805.12177]

NN Failures

Objects can be created to trick neural networks!

Dataset Bias

Datasets, like ImageNet, are generally biased

One approach is to augment your dataset to add random permutations of data to avoid bias.

Demo: Adversarial Neural Networks to Promote Fairness

https://godatadriven.com/blog/towards-fairness-in-ml-with-adversarial-networks/

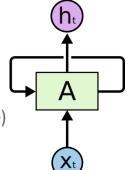
Dataset: Adult UCI

- Predict whether a person's income will be > \$50K or ≤ \$50K based on factors like:
 - Age
 - Education level
 - Marital status
 - Served in Armed Services?
 - Hours per week worked
 - Occupation sector
 - Etc.

Further Readings on Deep Learning

- Recurrent Neural Networks (RNNs)
- Long Short Term Memory Nets (LSTMs)
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Reinforcement Learning


Google DeepMind AlphaGo Zero

Generative Adversarial Networks

How to learn synthetic data

Recap

Theme: Details of convolutional neural networks

Ideas:

- Convolutions
- MaxPool
- Number of Parameters in a (C)NN
- Weight Sharing
- CNN Applications
- Transfer Learning
- NN Failures
- Using NNs to promote algorithmic fairness

