CSE/STAT 416
Introduction + Regression

Amal Nanavati
University of Washington
June 22, 2022

Adapted from Hunter Schafer’s Slides
The University of Washington acknowledges the Coast Salish peoples of this land, the land which touches the shared waters of all tribes and bands within the Duwamish, Puyallup, Suquamish, Tulalip and Muckleshoot nations.

Actions:
- Sign the petition for federal recognition of the Duwamish Tribe: https://www.change.org/p/federal-recognition-for-the-duwamish-tribe
- Visit and support the Duwamish Longhouse & Cultural Center: https://www.duwamishtribe.org/events-1
Machine Learning is changing the world.
It’s Everywhere!

Disruptive companies differentiated by INTELLIGENT APPLICATIONS using Machine Learning.
It’s Everywhere…
It’s terrifying that both of these things are true at the same time in this world:

- computers drive cars around

- the state of the art test to check that you’re not a computer is whether you can successful identify stop signs in pictures

12:26 AM - 13 May 2018

5,644 Retweets 12,727 Likes
It's Everywhere...

Object Detection
It’s Everywhere...

Object Detection
It’s Everywhere…

Face Detection

<table>
<thead>
<tr>
<th>Gender Classifier</th>
<th>Darker Male</th>
<th>Darker Female</th>
<th>Lighter Male</th>
<th>Lighter Female</th>
<th>Largest Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>94.0%</td>
<td>79.2%</td>
<td>100%</td>
<td>98.3%</td>
<td>20.8%</td>
</tr>
<tr>
<td>FACE++</td>
<td>99.3%</td>
<td>65.5%</td>
<td>99.2%</td>
<td>94.0%</td>
<td>33.8%</td>
</tr>
<tr>
<td>IBM</td>
<td>88.0%</td>
<td>65.3%</td>
<td>99.7%</td>
<td>92.9%</td>
<td>34.4%</td>
</tr>
</tbody>
</table>

Microsoft Plans to Eliminate Face Analysis Tools in Push for ‘Responsible A.I.’

The technology giant will stop offering automated tools that predict a person’s gender, age and emotional state and will restrict the use of its facial recognition tool.

June 21, 2022, 12:02 a.m. ET
It’s Everywhere...

Predictive Policing

neighborhoods where the software predicted fewer crimes had far more White residents...

Los Angeles, Calif.

30% White residents

100% White residents

= 50 predictions
It’s Everywhere…

Predictive Policing
Generically (and vaguely)

Machine Learning (ML) is the study of algorithms that improve their performance at some task with experience.

Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
Taxonomy of Machine Learning (Based on tasks)

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
Taxonomy of Machine Learning (Based on tasks)

1. **Supervised Learning**
 - Training data is labeled, where inputs are paired with correct outputs
 - Infers a mapping function from the inputs to outputs
 - **Examples:** image classification, stock price predictions

2. **Unsupervised Learning**
 - Analyze and cluster unlabeled datasets
 - Discover patterns or data categorization without the need for human intervention
 - **Examples:** DNA clustering, anomaly detection

3. **Reinforcement Learning**
 - Not covered in this class (you can learn this in CSE 415 / 473 (Introduction to Artificial Intelligence)
 - Agents learn the optimal behaviors to obtain maximum reward through interactions with the environment and observations of how they responds.
ML Pipeline

- Historical Bias
- Representation Bias
- Measurement Bias

- Deployment Bias

Training Data → Pre-Processing → ML model → Optimization algorithm → Quality metric → Pre-Processing → ML model

Historical Bias

Representation Bias

Measurement Bias

Deployment Bias

y → f → ŷ

x → ŷ
This course is broken up into 5 main case studies to explore ML in various contexts/applications.

1. Regression
 - Predicting housing prices

2. Classification
 - Positive/Negative reviews (Sentiment analysis)

3. Deep Learning
 - Recognizing objects in images

4. Clustering & Similarity
 - Find similar news articles

5. Recommender Systems
 - Given past purchases, what do we recommend to you?
Course Topics

Models
- Linear regression, regularized approaches (ridge, LASSO)
- Linear classifiers: logistic regression
- Non-linear models: decision trees
- Deep learning
- Nearest neighbors, clustering
- Recommender systems

Algorithms
- Gradient descent
- Boosting
- K-means

Concepts
- Loss functions, bias-variance tradeoff, cross-validation
- Point estimation, MLE
- Sparsity, overfitting / underfitting, model selection
- Decision boundaries
ML Course Landscape

CSE 446
CSE majors
Very mathematically demanding course

STAT 435
STAT majors
Very technical course

CSE/STAT 416
Everyone else!
- This is a super broad audience!

Give everyone a strong foundational understanding of ML
- More breadth than other courses, a little less depth
Level of Course

Our Motto

Everyone should be able to learn machine learning, so our job is to make tough concepts intuitive and applicable.

This means...

- Minimizing pre-requisite knowledge
- Allowing you to understand the ML concepts in an intuitive way.
- Focus on important ideas, avoid getting bogged down by math
- Exposed to Python, libraries and infrastructure to program ML problems
- Learn concepts in case studies

Does not mean course isn’t fast paced! There are a lot of concepts to cover!
Course Logistics
Who am I?

Amal Nanavati
Instructor
he/they
amaln@cs

Background
- 4th-year PhD student in CSE
- **Research**: human-robot interactions, assistive technology
- **Teaching**: CSE 416 Head TA, 7th-12th grade CS & ML
- **Hobbies**: hiking, biking, board games, cooking.

Contact
- Course Content + Logistics: [EdStem](#)
- Personal Matters: amaln@cs.washington.edu
Who are the TAs?

Tanmay Shah
Head TA
he/him
tanmay@cs

Josh Gardner
he/him
jpgard@cs

Wuwei Zhang
she/her
wz86@cs

Karman Singh
he/him
shubhs2@cs

Max Bi
he/him
mbi6245@uw
On your phone / laptop
What is/are your major(s)?
Lectures
Introduced to material for the first time. Mixed with activities and demos to give you a chance to learn by doing. No where near mastery yet!

Sections
Practice material covered in 1 in a context where a TA can help you. The emphasis is still on you learning by doing.

Checkpoints
Test your understanding of the last concept.

Homeworks
With the scaffolding from 1 and 2, you are probably now capable to tackle the homework. These will be complex and challenging, but you'll continue to learn by doing.

Learning Reflections
Recap broader context of the past week.
- We happen to not track attendance, but it is expected that you attend lecture and section
- Panopto for live lecture recordings and weekly section recordings
Assessments

- **Weekly Homework Assignments (65%) !!!**
 - **Number:** 7 (equally weighted)
 - Each Assignment has two parts that contribute to your grade
 - Programming (40%) – autograded, you receive scores right away
 - Conceptual (25%) – you receive scores after the deadline

- **Checkpoints (10%)**
 - Designed to be doable (30 mins) if you follow each previous lecture
 - **Number:** 14 (each lecture, drop 2)

- **Learning Reflections (10%)**
 - **Number:** 8 (each week, drop 1)

- **Final Exam (15%)**
 - Take-home (intended to take 2 hrs)
 - **Released:** Wed 8/17 9AM
 - **Due:** Thurs 8/18 11:59PM

 - Unless otherwise stated, all work must be done individually
Learning Reflections

- **Summary:** 2-4 sentences
- **List of key concepts (≥ 5)**
- **Uncertainties**

Concepts

- **Neural networks (NN)**
 - Each neuron will have weights and values, and the summation of those values (or with an activation function for non-linear) will go into each neuron in the hidden layer.
 - Each neuron in the hidden layer can have a bias term which is subtracted from its input value.
 - Then based on a certain set of rules for the output, its output will go to the neurons in the next layer, which can be another hidden layer or the output.
 - You keep doing this until you get the output.
 - There are no set rules yet as to what is better practice for all cases, so there are a lot of hyperparameters like number of hidden layers or hidden neurons, the activation function, learning rate for gradient descent, batch size, epochs to train, etc.

- **Convolutional NN:** the idea is to reduce the number of weights that needs to be learned in the NN by using kernels and pools to reduce the number of features.
 - **Convolution with kernels**
 - A kernel can "slide" across the original input data, generally to find sum of element-wise product between the kernel and overlapping part of the image. The output of this is a smaller version of the original image.
 - You can decide the size of kernel, padding size and values, and stride values
 - **Pools**
 - Similar to a kernel, but instead of using all the values to be part of the output (through summation, products, etc.), just pick a similar value like the min, max, average, median, etc. Typical to use the max pool.
 - Then use a combination of kernel convolution and pooling to get a smaller input for the NN.

Uncertainties

It seems neural networks is a less developed field compared to the other machine learning algorithms that we have learned about this quarter. One thing I wonder is, how do you know it is ready to implement in the world for real life applications, especially when it can have high error rates with even the slightest change to the input or model?
Homework Logistics

● **Late Days**
 ○ 6 Late Days for the whole quarter.
 ○ Can use up to 2 Late Days per homework (except last one!)
 ○ Each Late Day used after 6 results in a -10% on that assignment
 ○ No late days on Learning Reflections.
 ○ Checkpoints can be turned in up to a week later for 50% credit.

● **Collaboration**
 ○ You are encouraged to discuss assignments and concepts *at a high level*
 ○ If you are reading off parts of your solution, it’s likely not high level
 ■ Discuss process, not answers!
 ○ All code and answers submitted must be *your own*
 ○ We are running a code similarity-checker.

● **Turn In**
 ○ Homeworiks (Conceptual) and Learning Reflections are turned in on *Gradescope*
 ○ Homeworiks (Programming) and Checkpoints are turned in on *EdStem*
Getting Help

Office Hours

<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Wuwei</td>
<td></td>
<td></td>
<td>Wuwei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoom</td>
<td></td>
<td></td>
<td>Zoom</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td>Josh</td>
<td>Sections</td>
</tr>
<tr>
<td></td>
<td>Zoom</td>
<td></td>
<td></td>
<td></td>
<td>Tanmay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CSE 121</td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Max</td>
<td>Max</td>
<td></td>
<td>Tanmay</td>
<td>CSE 121</td>
</tr>
<tr>
<td></td>
<td>Zoom</td>
<td></td>
<td>Zoom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td>Josh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zoom</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Lecture</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>Amal</td>
<td>Karman</td>
<td>Amal</td>
<td>Karman</td>
<td>CSE 131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>CSE 212</td>
<td>CSE 131</td>
<td>CSE 212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Getting Help

EdSTEM

- Required Pre-Course Training: Python and ...
 - General Tianmey Shah INSTRUCTOR 5d 6

- Welcome to CSE/STAT 416!
 - General Amal Nanavati INSTRUCTOR 5d 6

Last Week
Getting Help

• Office Hours are the best place to get help!

<table>
<thead>
<tr>
<th>Office Hours (Sample Scenarios)</th>
<th>EdSTEM (Sample Scenarios)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “My code isn’t working, and I don’t know why.”</td>
<td>• “I think there is a typo in this question.”</td>
</tr>
<tr>
<td>• “Can you explain this concept to me?”</td>
<td>• “What does this notation mean?”</td>
</tr>
<tr>
<td>• “I don’t understand this homework question.”</td>
<td>• “This is how I’m interpreting this (conceptual) homework question, but I think it might be wrong. Can you clarify?”</td>
</tr>
<tr>
<td>• “This is how I’m thinking about Q#, am I on the right track?”</td>
<td></td>
</tr>
</tbody>
</table>

• Rule-of-thumb: if it requires back-and-forth interaction, Office Hours is the right place!

• EdSTEM Turnaround: 1 business day

• Don’t be surprised if a TA responds to your EdSTEM question asking you to come to Office Hours!
Questions?
Brain Break
Case Study 1

Regression: Housing Prices
On your phone / laptop

What factors do you think influence the price of a house?
Fitting Data

Goal: Predict how much my house is worth

Have data from my neighborhood

\[(x_1, y_1) = (2318 \text{ sq. ft.}, \$315k)\]
\[(x_2, y_2) = (1985 \text{ sq. ft.}, \$295k)\]
\[(x_3, y_3) = (2861 \text{ sq. ft.}, \$370k)\]
\[\vdots \quad \vdots\]
\[(x_n, y_n) = (2055 \text{ sq. ft.}, \$320k)\]

Assumption:

There is a relationship between \(y \in \mathbb{R}\) and \(x \in \mathbb{R}^d\)

\[y \approx f(x)\]

\(x\) is the input data. Can potentially have many inputs

\(y\) is the outcome/response/target/label/dependent variable
A model is how we assume the world works

Regression model:

“Essentially, all models are wrong, but some are useful.”

- George Box, 1987
We don’t know f! We need to learn it from the data!

Use machine learning to learn a predictor \hat{f} from the data.

For a given input x, predict: $\hat{y} = \hat{f}(x)$

Small error on an example, means we had a good fit for that point.
ML Pipeline

- Training Data
- Pre-Processing
- ML model
- Optimization algorithm
- Quality metric

Symbols:
- x: Input data
- y: Target variable
- \hat{y}: Predicted output
- \hat{f}: Estimated function

Bias:
- Historical Bias
- Representation Bias
- Measurement Bias
- Deployment Bias
Regression

Is a supervised learning algorithm

Given a set of training data examples $X^{(1)}, X^{(2)}, ..., X^{(n)}$ associated to with set of continuous values $y^{(1)}, y^{(2)}, ..., y^{(n)}$ we want to build a predictor function that learns how to map $x^{(i)}$ to $y^{(i)}$.

Each example $x^{(i)}$ can have from 1 to many features $X_{1}^{(i)}, X_{2}^{(i)}, ..., X_{d}^{(i)}$. We want to establish the relationships between different features of our data in order to make a good prediction.

A typical regression problem is house price prediction.
ML Pipeline

- Training Data
- Pre-Processing
- ML Model
- Optimization Algorithm
- Quality Metric

- Historical Bias
- Representation Bias
- Measurement Bias
- Deployment Bias
Assume we have a simple model with **one feature**, where we establish a linear relationship between **the area of a house** i and **its price**:

$$y_i = w_0 + w_1 x_i + \epsilon_i$$

w_0, w_1 are the **parameters** of our model that need to be learned

- w_0 is the intercept / **bias**, representing the starting price of a house
- w_1 is the slope / **weight** associated with feature "area of a house"

Learn estimates of these parameters \hat{w}_1, \hat{w}_0 and use them to predict new value for any input x!

$$\hat{y} = \hat{w}_1 x + \hat{w}_0$$

Why don’t we add ϵ?
Basic Idea

Try a bunch of different lines and see which one is best!

What does best even mean here?

![Graph showing a scatter plot with linear trends for area of a house and price.](image-url)
ML Pipeline

- Historical Bias
- Representation Bias
- Measurement Bias

- Deployment Bias
Cost / Loss of predictor

Define a “cost” for a particular setting of parameters

Low cost → Better fit

Find settings that minimize the cost

For regression, we will use the error as the cost.

- Low error = Low cost = Better predictor (hopefully)
How to define error? **Mean squared error (MSE)**
Goal: Get you actively participating in your learning

Typical Activity
- Question is posted
- **Think** (1 min): Think about the question on your own
- **Pair** (2 min): Talk with your neighbor to discuss question
 - If you arrive at different conclusions, discuss your logic and figure out why you differ!
 - If you arrived at the same conclusion, discuss why the other answers might be wrong!
- **Share** (1 min): We discuss the conclusions as a class

During each of the **Think** and **Pair** stages, you will respond to the question via a Poll Everywhere poll
- Not worth any points, just here to help you learn!
Think

Sort the following lines by their MSE (mean-squared errors) on the data, from smallest to largest. (estimate, don’t actually compute)
Sort the following lines by their MSE on the data, from smallest to largest. (estimate, don’t actually compute)
ML Pipeline

- Historical Bias
- Representation Bias
- Measurement Bias

Training Data → Pre-Processing → ML model

Optimization algorithm

Quality metric

y → f → ŷ

x → ŷ

- Deployment Bias
Minimizing Cost

MSE is a function with inputs w_0, w_1, different settings have different MSE for a dataset.

$$\hat{w}_0, \hat{w}_1 = \arg\min_{w_0, w_1} MSE(w_0, w_1)$$

$$= \arg\min_{w_0, w_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Unfortunately, we can’t try it out on all possible settings ☹️
Instead of computing all possible points to find the minimum, just start at one point and “roll” down the hill. Use the gradient (slope) to determine which direction is down.

Start at some (random) weights w

While we haven’t converged:

$$w \leftarrow \alpha \nabla L(w)$$

- α: learning rate
- $\nabla L(w)$: the gradients of loss function L on a set of weights w
Brain Break
Higher Order Features

This data doesn’t look exactly linear, why are we fitting a line instead of some higher-degree polynomial?

We can! We just have to use a slightly different model!

\[y_i = w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \epsilon_i \]

How to decide what the right degree? Come back Monday!
Polynomial Regression

Model

\[y_i = w_0 + w_1 x_i + w_2 x_i + \ldots + w_p x_i^p + \epsilon_i \]

To capture a non-linear relationship in the model, we can transform the original features into more features!

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (constant)</td>
<td>(w_0)</td>
</tr>
<tr>
<td>1</td>
<td>(x)</td>
<td>(w_1)</td>
</tr>
<tr>
<td>2</td>
<td>(x^2)</td>
<td>(w_2)</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>(p)</td>
<td>(x^d)</td>
<td>(w_d)</td>
</tr>
</tbody>
</table>

How do you train it? Gradient descent (with more parameters)
Features are the values we select or compute from the data inputs to put into our model. Feature extraction is the process of reducing the number of features in a dataset by creating new features from the existing ones.

Model

\[y_i = w_0 h_0(x_i) + w_1 h_1(x_i) + \ldots + w_D h_D(x_i) + \epsilon_i \]

\[= \sum_{j=0}^{D} w_j h_j(x_i) + \epsilon_i \]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(h_0(x)) often 1 (constant)</td>
<td>(w_0)</td>
</tr>
<tr>
<td>1</td>
<td>(h_1(x))</td>
<td>(w_1)</td>
</tr>
<tr>
<td>2</td>
<td>(h_2(x))</td>
<td>(w_2)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>d</td>
<td>(h_d(x))</td>
<td>(w_d)</td>
</tr>
</tbody>
</table>
ML Pipeline

- Historical Bias
- Representation Bias
- Measurement Bias

Training Data → Pre-Processing → ML model

Optimization algorithm

Quality metric

y → \hat{y} → \hat{f} → x
Generally, we are given a data table of values we might look at that includes more than one feature per house.

Each row is a data point.

Each column represents a feature

One of the columns contains the actual output values

<table>
<thead>
<tr>
<th>sq. ft.</th>
<th># bathrooms</th>
<th>owner’s age</th>
<th>...</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>3</td>
<td>47</td>
<td>...</td>
<td>70,800</td>
</tr>
<tr>
<td>700</td>
<td>3</td>
<td>19</td>
<td>...</td>
<td>65,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1250</td>
<td>2</td>
<td>36</td>
<td>...</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Sometimes we want to extract new features from existing features (e.g., #bath/#bed)
Adding more features to the model allows for more complex relationships to be learned

\[y_i = w_0 + w_1(sq. ft.) + w_2(# \text{bathrooms}) + \epsilon_i \]

Coefficients tell us the rate of change if all other features are constant
You can use anything you want as features and include as many of them as you want!

Generally, more features means a more complex model. This might not always be a good thing!

Choosing good features is a bit of an art.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (constant)</td>
<td>w_0</td>
</tr>
<tr>
<td>1</td>
<td>$h_1(x) \ldots x[1] = \text{sq. ft.}$</td>
<td>w_1</td>
</tr>
<tr>
<td>2</td>
<td>$h_2(x) \ldots x[2] = # \text{ bath}$</td>
<td>w_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>$h_D(x) \ldots \text{ like } \log(x[7]) * x[2]$</td>
<td>w_D</td>
</tr>
</tbody>
</table>
Term recap

- **Supervised learning**: The machine learning task of learning a function that maps an input to an output based on example input-output pairs.

- **Regression**: A supervised learning task where the outputs are continuous values.

- **Feature**: An attribute that we’re selecting for our model. Can come from the original dataset, or through some transformations (**feature extraction**).

- **Parameter**: The weight or bias associated with a feature. The goal of machine learning is to adjust the weights to optimize the loss functions on training data.

- **Loss function**: A function that computes the distance between the predicted output from a machine learning model and the actual output.

- **Machine learning model**: An algorithm that combs through an amount of data to find patterns, make predictions, or generate insights.

- **Optimization algorithm**: An algorithm used to minimize the loss during training. The most common one is **Gradient Descent**.
Dataset
\[\{(X^{(i)}, y^{(i)})\}_{i=1}^{n} \text{ where } X^{(i)} \in \mathbb{R}^{d}, y \in \mathbb{R} \]

Feature Extraction
\[
h(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{D} \\
h(x) = (h_0(x), h_1(x), ..., h_D(x))
\]

Regression Model
\[y = f(x) + \epsilon \]
\[= \sum_{j=0}^{D} w_j h_j(x) + \epsilon \]
\[= w^T h(x) + \epsilon \]

Quality Metric / Loss function
\[MSE = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 \]

Predictor
\[\hat{w} = \arg\min_w MSE(w) \]

Optimization Algorithm
Optimized using Gradient Descent

Prediction
\[\hat{y} = \hat{w}^T h(x) \]
Deadlines & Other Logistics

Complete Pre-Course Training!

Attend section tomorrow!
- Section AA/BA: 9:40-10:40AM, CMU 203
- Section AB/BB: 10:50-11:50AM, SAV 138
- Section AC/BC: 12:00-1:00PM, SMI 115

Homework 0: (weight: 0%)
- Aim to test your readiness for the course
- Coding portion on EdStem, at the Assessments tab
- Conceptual portion on Gradescope *(due Tues 11:59 pm)*

Learning Reflection 1: **Due Friday 11:59 pm**

Checkpoint 1: **Due Monday 1:50 pm**

Please check EdStem regularly for the latest updates on course logistics.