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Chapter 1

Introduction / Regression
Slides (pdf) Video (Panopto)

1.1 What is Machine Learning?

Definition 1.1: Machine Learning

Machine learning is the study of algorithms that can improve their performance at some task with
experience.

From the Netflix series recommended to you, to Siri’s assistance, to the GPS system on your phone, Machine
learning is overwhelmingly prevalent in the majority of the services presented by the modern technological
world. This is because with machine learning, we can build models that analyze and automate processes in
the real world. The key idea behind a machine learning algorithm is to intake data from the real world and
improve its model of the real world accordingly.

By modeling the real world as accurately as possible, machine learning aims to predict or categorize the
unseen. It does so by exploiting relationships in data as we will explore later on in this chapter.

Example(s)

A common example of the use of machine learning is Netflix’s series recommendations. If your Netflix
account has been designated as a consistent watcher of a specific show, you will be recommended
shows that Netflix thinks you will enjoy in the future. How does this happen?

Figure 1.1: With enough data, a machine learning algorithm can make decisions that seem intelligent.

Sometimes, such relationships in real world data are not easily conceivable to the human mind, which is what
gives machine learning algorithms the illusion of being “intelligent”, especially to those only familiar with AI
in the context of science fiction. However, we invite you to entertain the thought that perhaps more exciting
than a science-fiction cyborg is the idea that massive data computations are enough to present a sense of
genuine intelligence like humans. Whether it is generating speech or classifying animals, such tasks humans
for so long thought were only possible by their own brains became a matter of mathematical modeling.

Let us consider the Netflix example above. If a friend really enjoys ”The Office”, you might be inclined to
recommend that they also watch ”Parks and Rec” due to the similar style of comedy in the shows. This
is a simple prediction analysis you could have done in your own mind–no machine learning model required

1-2

https://courses.cs.washington.edu/courses/cse416/22sp/lectures/1/1.pdf
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c291de4c-ab9c-405e-899f-ae670023ac45


[DRAFT: Content subject to change] 1.1 Introduction to Machine Learning (Non-Majors) 1-3

here. But what if you wanted to do the same for lots of people who have different show preferences than
you? In our current digital era we now have massive amounts of data with thousands of variables–some of
those variables interact with each other, and we don’t exactly know which ones, or how, or why. This is
where machine learning comes in. The applications of this technology have had profound impact on various
arenas like medicine, language processing, robotics, and most importantly, predicting the winning contestant
of The Bachelor!

1.2 Types of Machine Learning

There are different types of machine learning, defined by how the “learning” happens. The main three are:

Definition 1.2: Supervised Learning

Supervised Learning is the most basic type of machine learning. A model is presented with a
dataset that has labeled input and output pairs.

This learning is “supervised” by humans with guidance on what the input is exactly and what the output
is exactly. The model will improve its performance by training on these explicitly labeled pairs. A classic
example is image classification, like sorting animals, where a bunch of labeled images are fed into a model
so the model has lots of pre-labeled examples of “cats” and “dogs”.

Definition 1.3: Unsupervised Learning

Unsupervised Learning analyzes an unlabeled dataset. There is no specified input or output, just
a big mesh of data. Thus, it is up to the model to categorize and find patterns within the data.

Clustering things that are similar with each other is a popular technique in unsupervised machine learning.
Image classification can be unsupervised too: The model is fed a bunch of pictures of cats and dogs but
none of these images are labeled. Because all cats kind of look like each other (they are hence structurally
similar in data), and all dogs kind of look like each other, but cats and dogs look different from each other
relatively in the dataset, a model can assert that these are probably two distinct categories.

Definition 1.4: Reinforcement Learning

Reinforcement Learning is a type of machine learning that devises a method to maximize desired
behavior in a model by using a reward system, and penalizes undesired behavior.

What makes reinforcement learning unique is that its reward system behaves as a separate agent so that short-
term successes aren’t stalled upon, and the model prioritizes long-term success. An example of reinforcement
learning is in Pac-Man, where long-term planning coded into the algorithm can achieve superhuman perfor-
mance. This type of learning is very common in gaming, though we will not expand upon it further in this
text as its usage is limited.

For now, we will focus on Supervised learning, so don’t worry if the other two don’t make sense right now.

1.3 Main Applications of Machine Learning

The rest of this text will be organized in a way that follows the 5 main kinds of machine learning application:

1. Regression

2. Classification

https://arxiv.org/abs/2203.16648
https://arxiv.org/abs/2203.16648
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3. Document Retrieval & Clustering

4. Recommender Systems

5. Deep Learning

1.4 Case Study 1: Regression

1.4.1 What is Regression?

Definition 1.5: Regression

Regression is a supervised learning technique used to predict a dependent variable based on one or
more independent variables by estimating a relationship between them.

Regression is the first application of machine learning that we will discuss here. Regression is applicable when
we want to know the answer to one thing, but we have clues coming from multiple sources. An example
of this is house prices. What can you use to determine the price of a house? Its square footage? The
neighborhood it’s in? What about the view? What about when it was built? There are many independent
variables here, and they may all be important for predicting our dependent variable, the price.

1.4.2 How Does Regression Work?

Let’s first go over the general premise of how regression works. Consider our dataset of x and y pairs. The
x’s are training examples, or the input. If we are going off the house prices example, you can think of each x
as a list of all the information about one specific house that helps determine its price, like the square footage
and the year it was built. The y’s are the values of our output. In this case each y is a price for one specific
house. We will say that we have n number of x’s and y’s like so:

(x, y)(1), (x, y)(2), ..., (x, y)(n) (1.1)

So, x(1) is a list of facts about house 1, and y(1) is its price. If we let i be equal to some index number, then
what we mean for any house i is that it has information x(i) and price y(i). Given all our x and y pairs, we
want to build a predictor function that learns how to map x(i) to y(i). We would ideally like to be able to
predict a house price (output) from a house’s information (input).

It is important to note that a single x is a list. It includes various pieces of information about a house like
its square footage and its year built. We will call these pieces of information ”features”.

Definition 1.6: Feature

A feature in machine learning is a single variable that is part of the input. Our input ”house
information”, has features ”square footage” and ”year built”.

Notation-wise, we will let capital X denote a single feature and d be the number of features we have in a
single input x(i):

x(i) = X
(i)
1 , X

(i)
2 , ..., X

(i)
d (1.2)

These features are important to label distinctly because some features in an input may be more important
for predicting the output than others.
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For simplicity’s sake, we will consider an input of one feature, square footage. So, let x(i) be a list of size
d = 1 containing only square footage as input. Observe the pairings below:

Figure 1.2: There are n number of x and y pairs, with x being the square footage and y being the price of
each house.

To use regression, we have to assume that there exists a relationship between x and y. This means that we
have to assume that somehow, for some reason, the square footage has an effect on the house price. Thus,
we are making the assumption that:

y ≈ f(x) (1.3)

where y ∈ R and x ∈ Rd. Remember that R is the set of all real numbers. So all this notation means is that
y is a real number, and x is d number of real numbers (since our input can be made up of multiple features).
Since we assumed that y has a relationship with x, we have asserted that some function applied to x should
give us y. We call this the true function.

Definition 1.7: True Function

The true function in regression is the function we assume exists in the real world that maps out
the input to the output. It is denoted as f .

Finally, remember that in this equation, x will always be an independent variable, or an input, and y will
always be a dependent variable, the output, or the final thing we are trying to predict.

1.4.3 Defining the Model

After assuming that true function f exists, we now try to define a model that can be as close as possible to
f since f is unknown. The model that we define ourselves to match close enough with f is denoted as f̂ .

Consider the plot in Figure 1.1.3.

Suppose the true function f is the polynomial function plotted above, because for whatever reason, house
prices correlate with square footage in that exact pattern in the real world. We can eye this plot and
intuitively draw a curve ourselves that could summarize the data pretty well. However, if our input was
more than one dimension, this could be very difficult to do and a regression algorithm can determine a better
fitting function in any case. A regression algorithm will thus conduct a series of computations to determine
which f̂ best fits the data. We will discuss how regression algorithms determine what is ”best” in the next
section.
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Figure 1.3: The dataset is plotted on a graph where the x-axis is square footages and the y-axis is house
prices.

1.5 Linear Regression

Though the learning process for all types of regression is more or less the same, we will start with linear
regression for simplicity’s sake. If we are doing linear regression, we assert that the relationship between x
and y is linear:

yi ≈ f(xi) = wxi + b (1.4)

Hence our f̂ will also be linear:

ŷi = ˆf(xi) = ŵxi + b̂ (1.5)

Note here the variables that have hats above them. Only xi doesn’t have a hat above it because it is the
true input. But the other components of our model ŵ and b̂ are mere estimates of the true w and b, and the

final output ŷi is a prediction, not the given y-value from our dataset.

Now, our goal is to find the most accurate values for ŵ and b̂.

The big picture outline for the regression algorithm is as follows:

1. Start with a random line to fit the data. This means try out a random value for ŵ and b̂.

2. Calculate the error from this line to know how bad it is.

3. Try another random line.

4. Calculate the error again. If this line is worse than the one we just tried, try to go back closer to your
older values for ŵ and b̂. If it’s better, just keep going in this direction!

5. Repeat until your error can’t get any smaller.

There are many ways to calculate error but the most popular metric and the one we will use for regression
is Mean-Squared Error (MSE).
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Figure 1.4: Regression starts with a random line and then tries to gradually make it better and better based
on error calculation.

Definition 1.8: Mean-Squared Error

Mean-Squared Error (MSE) is a type of error calculation. To calculate MSE you sum up all
the differences between your true y values from each x and your predicted ŷ values from each x and
square them. Then, you divide this number by your dataset size n:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (1.6)

A smaller MSE indicates a smaller loss which indicates a better model f̂ . So, our goal is to minimize MSE.
Since in the MSE equation the changing values are w and b, we can define MSE as a function with two
parameters. Mathematically, we solve for:

ŵ, b̂ = argminMSE(w, b) (1.7)

We minimize MSE to get the best f̂ through a process called Gradient Descent.

Definition 1.9: Gradient Descent

Gradient Descent is an optimization algorithm aimed at finding a local minimum in an error graph.
It uses calculus to utilize the gradient (slope) of a given error.

Gradient Descent uses the slope of an error graph to determine which direction signals a higher error versus
a lower error. You can think of it like rolling a ball down a hill.
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Figure 1.5: You can think of Gradient Descent as rolling a ball down a hill.



Chapter 2

Assessing Performance; Bias + Variance Tradeoff
Slides (pdf) Video (Panopto)

2.1 Linear Regression Model

Let us recap what we have learned from Chapter 1 about linear regression. With linear regression we have
many these many parts at play:

1. Data set: {(Xi, yi)}ni=1 where Xi ∈ Rd, y ∈ R

2. Feature Extraction: h(Xi) = (h0(Xi), h1(Xi), ..., hD(Xi))

3. Linear Regression Model: y = wTh(Xi)

4. Quality Metric / Loss function: MSE = 1
n

∑n
i=1(yi − ŷi)

2

5. Predictor: ŵ = argmin
w

MSE(w)

6. Optimization Algorithm: Optimized using Gradient Descent

7. Prediction: ŷi = ŵTh(Xi)

From our examples we have seen that a linear regression can be quite useful for predicting linear data with
high accuracy however, a linear regression has its limitations in that it can only predict linear data well. For
instance, take a look at some sample data below.

Figure 2.6: Nonlinear sample data.

We could attempt to fit a line to this data using the methods we have discussed but such a model would
never truly be able to represent the data. To better predict data like this we will use a similar model using
more features called polynomial regression.
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2.2 Polynomial Regression

From the sample data shown earlier, we see that a linear model would not fit the data well. Polynomial
regression is extremely similar to linear regression, which is represented using one input and a trained weight
value:

y = wx+ b (2.8)

Now, with polynomial regression we take more input features (weights) to approximate any degree polynomial
of our choosing to better fit polynomial like data.

Definition 2.1: Polynomial Regression Model

y = w0 + w1x+ w2x
2 + ...+ wdx

d

Now that we have the option to pick the degree of our model we have encountered our first hyperparameter.

Definition 2.2: Hyperparameter

A hyperparameter is a parameter whose value is used to control the learning process, different from
the values of other parameters or weights which are derived from training.

Looking again at the sample data from before, the data looks cubic so we would likely choose the model’s
degree hyperparameter to be 3. However, data does not often look this clean or is easy to visualize, so
choosing a polynomial complexity can be difficult. Let’s imagine we pick different model complexities for
new data and see how they fit.

Figure 2.7: Fitting different complexity models to data.

If we choose a linear regression model (degree = 1) or any other model complexity that is too low, our model
will perform poorly no matter how well our model is trained (see above). This idea can be referred to as
having a model that underfits the data. However, it is also possible to choose a model complexity that
is too high (see above p = 5, 20) which we call overfitting. This introduces the balancing act of machine
learning: variance and bias.
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2.3 Bias and Variance

Definition 2.3: Bias

Bias is the difference between the average prediction of our model and the expected value which we
are trying to predict.

Definition 2.4: Variance

Variance is the variability in the model prediction, meaning how much the predictions will change
if a different training data set is used.

Figure 2.8: Often low complexity or simple (on the left) models tend to have high bias and high complexity
models (on the right) tend to have high variance.

Variance and bias form the two main sources of error in a model that we work to control, but there is also
irreducible error, which is the error we can’t avoid or possibly eliminate.

Definition 2.5: Irreducible Error

Irreducible error is unavoidable error caused by elements outside of our control, such as noise from
observations.

In general for ML models, simple models have high bias while overly complex models have low bias but high
variance. We can identify our total error as this:

Error = Biased squared + Variance + Irreducible Error (2.9)

Or more formally as:

E[(y − f̂(x))2)] = bias[f̂(x)]2 + var[f̂(x)] + σ2
ϵ (2.10)

When it comes to best fitting a model, choosing hyperparameters like the degree in a polynomial regression
can have a major impact on the results of the model. In almost all real world data there is some noise.
The goal for creating a model is to be able to make a prediction about the given training data while also
generalizing well enough to predict the test data accurately. In Figure 1.1.3, we see that the simple linear
regression on the left is not fitting the data well and will then have poor training and test set performance.
The model on the right fits the training set with zero training error...but do we have a perfect model? The
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answer is no, this model is overfitting our training data, meaning that once we give the model more data it
will likely predict the new data with low accuracy as the model snakes around to hit every training point
perfectly. While it is our goal in ML to reduce error from the model, 0 training error is often not ideal. The
high complexity model in Figure 1.1.3 has high variance, relating to its definition, because it fits the training
data well but will perform poorly on new test set data, showing the differing results from one set to another.

Figure 2.9: Bias and variance tradeoff

Our goal is to find a model that fits the data most accurately. This middle ground often lies where there
is a good balance between bias and variance, as shown in Figure 1.1.4. This means that we are truly
understanding the main function at play and not the noise within the data set.

Another factor to consider is the amount of data. With a low volume of training data, being able to generalize
well is difficult. Imagine trying to fit a potentially highly complex model to only 10 data points. This would
make understanding the true relationship difficult. With more data, our model will inherently begin to
generalize better as outliers in the data have a decreasing impact on the overall model. This is because
increasing the number of data points to consider decreases the values placed on each data point individually.

Figure 2.10: Error versus the size of the training

The figure above represents how the decreased weight on individual points can help us generalize better and
decrease the model’s true error. Because the model is generalizing better (reducing variance), train error
slightly increases as it converges towards the decreasing true error.

In summary for choosing complexity we have learned that:
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1. Choosing hyperparameters are essential for a well fitting model.

2. Overfitting and Underfitting

3. Simple models tend to have high bias and low variance and complex models ten to have low bias and
high variance.

4. Choosing a model which has 0 training error is often not a good idea due to its high variance.

5. Error as a function of train set size

From these ideas it is easy to see that picking the model which has the best performance for unseen test data
set is the best indicator of true error. By choosing a model based on test error we will minimize variance as
we compare different model complexities. However, this situation would create a biased approach. Our goal
for a test set is to have a pure, ”untouched” representation for our model. If we chose the best model based
solely on test data performance we are choosing a model for that set. The test set would no longer represent
“the unknown” since we probed it many times to figure out which model would be best.

When choosing what type of model will perform the best, we must perform another split in our data. Between
a training and test set there is usually an 80/20 split, however this can vary depending on data set sizes.
To now choose a model’s hyperparameters without biasing towards the test set, we must create a third split
of the data called a validation set. This will allow us to make decisions about the model architecture
and complexity without ever touching the final testing set. We will learn more about validation sets in the
following chapter.



Chapter 3. Cross Validation / Regularization

Slides (pdf) Video (Panopto)

As we have discussed in the previous chapter, we must assess different model complexities. The metric used
to determine the best model complexity cannot be the training error, as it will favor the model that overfits
the training data, not the model that will perform the best in the future. However, we cannot use the test
error either, because we cannot tamper with the test set until the very end. Otherwise, our test set no longer
represents the ”unknown”.

3.1 The Validation Set

Since we cannot use the data that we trained on, nor the data that should be an unbiased representation of
the future, we must designate a new set to determine the best model complexity that is neither trained on,
nor promised to be an unbiased representation of future data. This will be the validation set.

Definition 3.1: Validation Set

The validation set is the set of the data used to optimize and find the best model for a task.

Validation data is not used to train on directly, but it is used at the end of each training round to calculate
an error based on unseen data. This is different from the test set because the validation error is what we use
to decide if training is worth continuing for a particular model, and how successful this model complexity is
compared to the others.

Observe the process captured in pseudocode below:

Figure 3.11: Pseudocode for validation set usage.

The total dataset is split into train, validation, and test sets. For each model complexity that we want to
assess, we train a model of that complexity and calculate the validation error at the end of training. We
only keep track of the lowest validation error because the model with the lowest validation error is the one
that is most likely to be successful on future unseen data. This is how we define ”best”.

The pros of having a validation set are that it is easy to implement and it is relatively fast. Validation sets
are used in Deep Learning for this reason. The cons of having a validation set are even though you don’t
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train on validation data, you can still overfit to validation data since you keep tailoring your model to be
successful on the validation set. Also, you have to sacrifice even more of your training data:

Figure 3.12: The validation set is taken from the training set, reducing the size of the training set.

3.2 Cross Validation

A clever idea to overcome the cons listed above is a technique called cross validation. Cross validation
shuffles different parts of the training data for training versus validating.

Definition 3.2: Cross Validation

Cross Validation is a technique of resampling different portions of training data for validation on
different iterations.

Here is the breakdown of the Cross Validation process:

1. First, the training set must be split into k number of chunks.

Figure 3.13: The training set is divided into a number of chunks.

2. One of these chunks is designated as a validation set for one iteration of training.

3. After one iteration of training, validation error is calculated on the single validation set chunk.

4. This is done k times, once for each chunk being the validation set.

5. All of the errors from each iteration are averaged. This is the final validation error for a model
complexity.

6. Repeat steps 1-5 for every model complexity you are assessing. The model complexity with the lowest
average validation error is the best model.

Below we have provided pseudocode for the steps above:
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Figure 3.14: The validation error is calculated by averaging the error from k different samples of validation
data.

Figure 3.15: Cross Validation pseudocode.

The pros of this method is that you don’t get rid of any of your training data. Also, you prevent overfitting
because you train on a unique subset of the train set for each iteration, instead of the same training set
for all iterations. The cons of this method is that it is very slow, because you have to train each model k
many times. This makes training extremely computationally expensive. Your choice of k, how many chunks
you split your train set into, also impacts your bias-variance trade-off: A lower k means you will have high
bias while a higher k means you will have high variance. In practice, developers will use k = 10 because it
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achieves a fine medium balance.

Now, we will look at other ways to prevent overfitting.

There are two other main culprits behind overfitting: using too many features, and placing too much
importance on specific features that are not that important. In other words, if the weight of a feature is very
large, this could be a sign of overfitting. To overcome this, the model must ”self-regulate” when its weights
become too big. This process is called regularization.

3.3 Regularization

Definition 3.3: Regularization

Regularization is a technique used by a model to make sure it maintains balanced weights for its
features to prevent overfitting.

Up until this point, we have always estimated out weights ŵ by using a quality metric that minimizes the
loss:

ŵ =w L(w)

However, we have now learned that minimizing the loss for the training set might make our weights overfit
the training set, and not be as ideal for future sets. So, we introduce a new term to our quality metric:

ŵ =w L(w) + λR(w)

where R(w) is the magnitude of the weights and λ is our regularization parameter. We will thus account
for our weights inside the quality metric. To account for the magnitude of all weights both negative and
positive, we can either take the sum of all absolute values, or the sum of squares.

3.3.1 Ridge Regression

Definition 3.4: Ridge Regression

Ridge Regression is a regularization method that uses the sum of the squares of the weights in a
model like so:

R(w) = |w0|2 + |w1|2 + ...+ |wd|2 = ||w||22 (3.11)

The notation for Ridge Regression is ||w||22 because it uses an L2-norm, which is a type of norm. The
notation for any norm uses the double bars and the subscript is the degree we raise each term to.
Unlike a 2-norm we aren’t raising the final sum to the 1/2 power, so the norm is squared, hence it
has the power of 2.

As Ridge Regression utilizes the sum of the square of our weights, our new quality metric becomes:

ŵ =w L(w) + λ||w||22

The regularization parameter, λ is a hyperparameter that determines how important the regularization term
is in our quality metric.

if λ = 0:

⇒ ŵ = argmin L(w)
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if λ =∞:

⇒ Case 1: if ||w||22 = 0 then ŵ = argmin L(w) + 0

⇒ Case 2: if ||w||22 > 0 then ŵ = argmin L(w) + λ||w||22 ≥ λ||w||22 =∞. Since We are trying to minimize
L(w), minL(w) = 0 so ŵ = 0.

if λ is in between 0 and ∞:

⇒ 0 ≤ ||w||22 ≤ argmin L(w)

3.3.2 Coefficient Paths

Observe the change in size of the coefficients of the weights in our model as we increase λ. As λ increases,
all weights get closer and closer to 0. This is what we mean by ”regularizing” the weights.

Figure 3.16: The effect of λ on the size of the weights.

3.3.3 The Intercept

When regularizing all the weights, we also happen to regularize w0, the intercept term. This doesn’t make
sense because we shouldn’t penalize a model for having a higher intercept since that may mean that the y
value units are just really high. The intercept also doesn’t affect the curvature of the a loss function. We
deal with this by changing the measure of overfitting to not include the intercept:

ŵ =(w0,wrest) L(w0, wrest) + λ||wrest||22

3.3.4 Scaling Features

Suppose we have a weight ŵ1 for a feature, house square footage. What would happen if we changed the
units of that feature to miles? Would ŵ1 need to change? Since we change the input to be a of a larger scaled
unit, the input values for this feature would be smaller. However, if the values are now smaller this means
that we are giving the feature less importance in our model. The solution to this problem is normalizing
all the features such that they are all on the same scale:
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Figure 3.17: We must apply this scaling to the test data and all future data using the means and standard
deviations of the training set, otherwise the units of the model and the units of the data are not compatible.
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4.1 Ridge Regression Recap

For ridge regression we use a standard MSE loss with an L2 norm regularizer.

ŵ = argmin
w

MSE(W ) + λ||w||22 (4.12)

The hyperparameter λ can play a large role in how a model behaves. For instance, if λ = 0 we would then
have a standard regression model with no regularization. On the opposite side of the spectrum, if λ = ∞
then any feature usage at all (any weights greater than 0) would penalize the model completely, leaving us
with a model that can only output 0. Clearly, if the goal is to create a useful model that uses regularization
neither of those two options are ideal. Instead, we will use something in between.

When choosing λ if it is too small then the model will overfit to the training data. As in previous chapters,
we must evaluate our hyperparameter on the validations set. We should typically pick the model that best
performs on the validation set (lowest error) using MSE only. Why MSE only when we have a regularized
objective function already? The reason is that different λ, or any hyperparemeter for that matter, mean we
are evaluating the model’s performance in different contexts or ”units”. We could compare the results of
any number of models using the same objective function, however when the hyperparameters are different
we cannot compare them.

For reference, here is an example process for choosing λ for ridge regression.

Algorithm 1 Process for selecting λ for ridge regression

for λ in λs do Train a model using using Gradient Descent
– ŵridge(λ) = argmin

w
MSE(W ) + λ||w||22

Compute validation error
– validation error = MSEval(ŵridge(λ))
Track λ with smallest validation error return λ∗ and estimated future error MSEval(ŵridge(λ∗))

We have seen how regularization can be useful with ridge regression to avoid overfitting by adding a level
of smoothness to our model. However there are many different ways to regularize and one way we will
investigate is called lasso, useful for selecting features.

4.2 Feature Selection

Feature selection sounds fun but why should we care? There are three major reasons why feature selection
is useful in machine learning.

1. Complexity - With too many features our model could be overly complex and overfit.

2. Interpretability - With less features, or selected feature, we can better understand our model and
see which features carry more information

3. Efficiency - With less features to consider, our model could be trained much easier and faster
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Let’s introduce a scenario where we want to create a good model for predicting the price of a house. We
have the opportunity to collect a wide variety of features, however we are unsure of what features are best
to be used.

Example(s)

3
• Lot size
• Single Family
• Year built
• Last sold price
• Last sale price/sqft
• Finished sqft
• Unfinished sqft
• Finished basement sqft
• Number of floors
• Flooring types
• Parking type
• Parking amount
• Cooling
• Heating
• Exterior materials
• Roof type
• Structure style
• Dishwasher
• Garbage disposal
• Microwave
• Range / Oven
• Refrigerator
• Washer
• Dryer
• Laundry location
• Heating type
• Jetted Tub
• Deck
• Fenced Yard
• Lawn
• Garden
• Sprinkler System

You or I could pick out that the features ”lot size” and ”last sold price” (among others) are likely good
indicators of a house’s sale price and that the features ”microwave” and ”garbage disposal” could have an
effect, but are not likely to be key factors for predicting a house sale price.This is a key example of feature
selection.

By selecting a smaller number of features, this model will be more interpretable as it is easier to determine
that ”lot size” is one of the most important features for predicting house price. With less features, our model
can be trained more easily. In addition, if the data must be gathered ourselves, gathering less data points is
simply easier to do.

Although it could be helpful to use all the information available to make a model that can predict well,
a large amount of features can be prohibitively expensive to train. Also, if features are used which are
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unimportant it could lead to the model overfitting the data.

Example(s)

Let us imagine it takes us 5 seconds to train a model with 8 features:
• Training 16 features would take 21 minutes.
• Training 32 would take about 3 years.
• Training 100 features would take 7.5 ∗ 1020 or about 50, 000, 000, 000 times longer than the age
of the universe.

Seems like it might not be worth considering if the ”sprinkler system” feature is included with the house in
our model. One method to feature select would be to try many small sets of features and see how to model
performs manually. However, this can be tedious and without trying every set of hyperparameters we would
not be certain that we have chosen the optimal features. To aid in feature selection we can use another linear
regression model with a new type of regularizer called lasso.

4.3 LASSO

We can create a regression using all of these features and add a regularizer in the hope that we achieve a
sparse weight vector which still performs well on the data. A sparse matrix / vector is one that is filled with
mostly 0. This would help us in feature selection as the unimportant features would have weight 0, meaning
they are not being considered.

Our format for a model with regularization is as such where L(w) is the measure of fit and R(w) measures
the magnitude of coefficients.

ŵ = argmin
w

L(w) +R(w) (4.13)

There are many different ways to create a regularizer. One that works well is the sum of squares which is
what we have seen in ridge regression (L2 norm).

Another possibility is simply the sum of the weights. This however would not be ideal as negative and
positive weights could cancel one another out. To fix this we could sum the absolute value of the weights,
which is exactly what the lasso model does. This is also known as the L1 norm.

Definition 4.1: Lasso Regression Model

ŵ = argmin
w

MSE(W ) + λ||w||1

Remember the definition of a p-norm.

Definition 4.2: p-norm

||w||pp = |w0|p + |w1|p + ...+ |wd|p

Without lasso, we could have tried different features and computed the resulting loss, but now we start with
a full model and then shrink coefficients towards 0. With ridge regression many of our coefficients as the
model is trained will descend towards 0, but not reach 0. Why? It has to do with the shape of the norm.
Ridge introduces a smoothness to prevent overfit by limiting the amount that one single feature can use.
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In general, the coefficients are pushed towards 0, but never actually reach it despite training for thousands
of epochs. In lasso, the L1 norm favors sparsity and produces a coefficient path where coefficients go towards
and actually remain at 0. Take a look at some coefficient paths for ridge regression below.

Figure 4.18: Ridge (right) and lasso (left) coefficient paths.

One way to think about this geometrically is that the L1 norm has a ”spikey” solution. In a L1 norm, as
coefficients are close to 0, the only way to get close to 0 is actually being 0. In a L2 norm, coefficients can
be very small and not quite reach 0.

Figure 4.19: Visualizing sparse solutions with L1 on left and L2 on right.

In Figure 2.0.2, L1 has spikes representing the places where the coefficients are 0. When the unregularized
coefficient paths (represented in red) touch the regularized solution in either graph we see that the diamond
shape will likely touch at one of its corners where a coefficient is 0 whereas L2 would be much more likely
to touch equally and at any location on the circle.

When it comes to choosing a λ for lasso, the choice is done exactly the same as what we have learned for
ridge regression.

However, there are caveats of using lasso. As with any regularizer, we are adding bias to our least squares
solution (remember bias + variance trade off). One way to remove some bias, but still benefit from having
a sparse solution would be to first run lasso, then extract the non-zero features and run those features on
a unregularized least squares so that coefficients are no longer shrunk from their possible ”truth” values as
the model is trained.

As with all types of machine learning it is important to remember that correlation does not equal causation.
Lasso will do exactly what you ask of it and nothing more. Lasso will find the features that are important for
predicting some output well. However, it is important to always think before and after whether the solutions
are representative of the type of data you are training on.
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Example(s)

There is a publicly available Communities and Crime Data Set which has a large number of
features which could be trained on to predict where crime will take place based on the demographics
of that location like its population density, the age of people living there, etc.

If you were to train a lasso model on this data set you would likely see that areas where there is a
high proportion of people aged 65 and up usually have low crime and lasso will likely select this as a
good predictor (non-zero coefficient). This is an example of correlation and not causation. We asked
our model to find good predictors of crime rate, however clearly it would not be logical to attempt to
lower high crime areas by moving lots of senior citizens there. In complex social issues, among other
data sets, remembering to think about what your model is doing vs what you would like it to do is
important.

In practice, lasso can run into some issues. Lasso tends to pick arbitrarily from correlated features, like
number of bathrooms and number of showers from our house price example. In this case it might make
more sense to choose bathrooms or to select them together, however lasso does not offer this guarantee. In
addition, lasso tends to have worse performance in practice compare to ridge regression because of the bias
introduced by pushing feature coefficients towards 0.

A solution to this problem where we want feature selection and the performance from ridge is a model called
elastic net which is simply the combination of a L1 norm and a L2 norm regularizer.

Definition 4.3: Elastic Net

ŵElastic Net = argmin
w

MSE(W ) + λ1||w||1 + λ2||w||22

A combination of both L1 (Lasso) and L2 (Ridge) regularizers.

To review we learned that lasso:

• Introduces more sparsity to the model.

• Is helpful for feature selection.

• Is less sensitive to outliers.

• Is more computationally efficient as a model due to the sparse solutions.

And ridge regression:

• Pushes weights towards 0, but not actually 0.

• Is more sensitive to outliers (due to the squared terms).

• In practice, usually performs betters.

This concludes the chapter’s focus on regression and next we will learn about different models for different
uses like classification.
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So far, we have talked about Regression analysis for continuous output values such as house prices, where
a house price can be any number in a range. We will now transition to the next application of machine
learning, Classification. Now, our output values are no longer continuous , rather they are distinct classes.

Definition 5.1: Classification

Classification is an application of machine learning where a class label is predicted based on some
input data.

Examples of classification are classifying emails as spam or not, classifying animals as cats or dogs, classifying
product reviews as positive or negative. Notice that in all of these scenarios, our outputs are not numerical
values along a range, so regression no longer applies here. This means that for our quality metric, Mean-
Squared Error is also no longer a viable option because we do not have predicted numerical values.

We will examine classification through a restaurant review example. Suppose you have a collection of
different restaurant reviews and you want to classify them as positive or negative. You would like to extract
the sentences from the review, feed them as input to a classifier model, and let the model tell you if the
review is good or bad. How would you go about this?

5.1 Simple Threshold Classifier - Implementation 1

The first way we could solve this problem is by using a Simple Threshold Classifier. In this type of classifier,
we do Sentiment Analysis: We will curate a list of positive and negative words, and then classify each
of the reviews by the frequency of positive words and the frequency of negative words. Our lists may look
something like this:

Positive: ”great”, ”awesome”, ”good”, ”amazing”
Negative: ”bad”, ”terrible”, ”disgusting”, ”sucks”

If a sentence has more positive words than negative words, we will assign it the output value y = +1, to
indicate that this is a positive review. Otherwise, we will assign it the output value y = −1, to indicate that
this is a negative review. For example, if our review was ”Sushi was great, food was awesome, but the service
was terrible”, we count two positive words ”great” and ”awesome”, and one negative word ”terrible”. Since
there are more positive words than negative words, we assign this review the output +1, and classify it as a
positive review.

There are unfortunately a number of limitations with this approach. First off, how do we get the list of
positive and negative words? If we want a robust list covering the entire dataset, do we have to go through
each review ourselves and painstakingly write this list up from scratch? And also, what about words that
have varying degrees of sentiment? Would you say ”awesome” has a higher sentiment than ”good”? And
what about the adverb ”not”? If we say ”not good” we mean negative sentiment, but ”good” was on the list
of positive words. As you can see, the Simple Threshold Classifier may not suffice for our problem, which
calls the need for a better approach.
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5.2 Linear Classifier - Implementation 2

We will try to account for the issue of varying sentiment in a Linear Classifier approach. Unlike the Simple
Threshold Classifier, the Linear Classifier does not require us to write a list of positive and negative words
ourselves. Instead, it will learn, using labeled training data, the weights of different words. These weights
will be used to score a sentence. Suppose we have trained a model that takes in reviews x and their ratings
y, and uses the words in each as features to predict the review’s sentiment ŷ. Let the following be the learned
weights for each word:

Figure 5.20: Learned weights representing sentiments for words found in the restaurant reviews.

Now let’s see how these weights play out on our example:

”Sushi was great, food was awesome, but the service was terrible”

We will calculate the sentiment score of this input using the frequencies of each word:

Score(x) = ”awesome”∗1+ ”great”∗1+”terrible”x1
Score(x) = 2.7 ∗ 1 + 1.5 ∗ 1 +−2.1 ∗ 1

Score(x) = +2.1

As the score here is positive, we decide this review is positive. We call this classification method ”Linear”
because our output is a linear weighted sum of inputs. Note here that our threshold is 0, and in the unlikely
event we achieved a score of exactly 0, we would choose an arbitrary class for this review.

Can you think of some limitations for this approach? We still have not really resolved the case ”not good”
meaning not good, and ”not not good” meaning good. Also, sometimes a word’s sentiment relies on sur-
rounding words. For example, saying ”a bit sad” is less negative than just ”sad”. Thus, a linear classifier
cannot learn complex models very well. Though we will not go into it much in this textbook, Natural
Language Processing (NLP) is a field of machine learning that is used for more complex analyses of
language.
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Figure 5.21: Notation for linear classifiers.

5.3 Decision Boundaries

We can visualize the effect of the weighted words on determining if a review is positive or negative via
illustrating the decision boundary. For simplicity’s sake, suppose we only had two nonzero-weighted features,
”awful” and ”awesome”. Our decision boundary would look like so:

Figure 5.22: A linear decision boundary between two features.

Since we have more than two nonzero-weighted features, the decision boundary for the example would be a
higher-dimensional graph with linear boundaries. If we needed a more complex, nonlinear decision boundary,
then we would need a more complex model. These are examples of more complex decision boundaries:
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Figure 5.23: Visualization of nonlinear decision boundaries produced by more complex classification models.

5.4 Classification Error

As we mentioned earlier, Mean-Squared Error is no longer applicable to Classification, because we aren’t
trying to fit a predictor to some datapoints by reducing each point’s error from the predictor. This is
because our output values aren’t continuous numerical values, they are classes. So, we calculate error in a
much simpler way:

Error = (wrong classifications)/(total classifications)

Error =
1

n

n∑
i=1

(yi ̸= ŷi) (5.14)

where n is the total number of classifications.

A ”wrong” classification would be if the true label y of a review was positive, but we predicted ŷ to be
negative, or if the true label y of a review was negative, but we predicted ŷ to be positive. Thus, for our
accuract calculation we have:

Accuracy = 1− Error = (correct classifications)/(total classifications)

5.5 Classification Accuracy

When calculating the accuracy of a classification model, it is important to note that since we are outputting
distinct classes, not all correct classifications are due to the model’s own learning. Some are due to random
chance. For example if you had two output classes that were equally likely and your model was simply
randomly guessing, it could achieve 0.5 accuracy. If all classes are equally likely to be chosen, then random-
chance accuracy is 1/k classes.

Accuracy as a metric should be taken with some precaution. If you were trying to classify emails as spam
or not spam, and you made a Dummy Classifier that always outputted ”spam” no matter what, you could
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get 90% accuracy, simply because you might have 90% of your inbox filled with spam! We call this Dummy
Classifier a Majority Class Classifier, because it classifies everything as whatever the majority is. At the
bare minimum, your classification model should be higher than a Majority Class Classifier.

Evidently, if there is a class imbalance we might get a higher accuracy than random chance when this is not
actually a reliable baseline to compare our model performance to. This is where a confusion matrix is
helpful.

Definition 5.2: Confusion Matrix

A Confusion Matrix is a table comparing all the true positive, false positive, false negative, and
true negative values from the output of a model.

Figure 5.24: A confusion matrix for binary classification.

Is a false negative or a false positive worse? The answer relies on your application. If we are building a
model to detect spam email, a false negative would result in an annoying spam email in your inbox, but
a false positive would mean that an important email is now lost. If we are building a model to detect a
disease, a false negative means that the disease goes untreated and a patient could suffer greatly while a false
positive means that a healthy patient wasted some money on a treatment. Depending on the consequences
of false predictions of our models, we will have to make decisions on whether or not the model is ethical.
In later chapters we will discuss the ethical consequences of erroneous or discriminatory models on different
demographic groups further in depth.

5.6 Learning Theory

How does adding more data affect the error rate of our models? Previously, we discussed a limitation of the
phrase ”not good”. While this has a positive word ”good” in it, ultimately it should not count positively
towards the score. So for our language analysis we might look at two words at a time instead of one. We
refer to one word as a ”unigram” and two words as a ”bigram”. In general, the more data the better.
However, it is interesting to note that if we parse our sentences differently, the advantage of more data
changes drastically. A model that uses bigrams instead of unigrams is a more complex model, so it will
do worse than a unigram model with less data (due to overfitting to the limited training set), but after a
sufficient amount of data, it will start doing much better.
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Figure 5.25: The learning curve for different data parsing types.

5.7 Changing the Threshold

If some types of error, such as false negatives or false positives are more unacceptable than the other in
our context, it might be a good idea to change our scoring threshold in the decision boundary. If a doctor
wants to lower the risk of making a false negative prediction for the safety of her patients, she could tune her
model’s threshold to be closer to negative ∞. This way, a score less than 0 is required to output ”negative”,
so while we increase the likelihood of false positives, at least we decrease the likelihood of false negatives,
which are more dangerous in the medical world.

Conversely, if I want to lower my chances of missing out on Aritzia’s latest Winter sale in my inbox, I would
tune my spam-detector model’s threshold to be closer to positive ∞. I want there to be less instances of
detecting spam when the email is actually important, so by increasing the score threshold, the score must
be higher to be marked as spam.
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6.1 MSE / Convexity

In previous chapters we have discussed how mean squared error (MSE) can be used to create machine
learning regression models which can perform quite well. However, in classification MSE is not possible
because the task is not convex, continuous or differentiable. In addition, there is not a closed form solution,
like in regression. This means that algorithms like gradient descent won’t be able to find an optimal set of
weights for the discrete results.

Definition 6.1: Convexity

A function is considered convex if a line segment between any two points of the function does not
lie below the graph.

Figure 6.26: Convex (right) and non convex (left) functions.

Without a convex function, gradient descent might only be able to find a local minimum for the function or
be unable to find any minimum whatsoever. Imagine taking gradient descent on the left non convex function
shown in Figure 6.1. In this scenario, we would never reach a global minimum.

In classification with MSE, the three requirements of a convex, continuous and differentiable function are not
met. The solutions are discrete values without any ordinal nature so we need to transform our problem into
something where we can measure how close a prediction is to some category, rather than directly outputting
that category from our model. One way we can do this is by measuring error using probabilities. Probabilities
are continuous and can help measure the level of certainty we might have for a prediction.

Example(s)

For example, let us imagine we are creating a model to predict the sentiment of a restaurant review
where a positive review maps to +1 and a negative review maps to -1. Ideally the trained model
would be able to predict a review like “The sushi everything else were awesome!” positively.

P (y = +1 | x) = “The sushi and everything else were awesome!”) = 0.99

Then, using probabilities for reviews that have a higher degree of uncertainty regarding the sentiment,
our model could recognize that.

P (y = −1 | x) = “The sushi was alright and service was okay.”) = 0.50
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With probabilities the certainty of an event is now known but the results must be mapped back to the
classifier to make a choice. We can assign values based on if the resulting probability is greater than 0.50
to be the output. With probabilities it is easy to recognize when a model has a high degree of certainty
(high probabilities). In addition, we can compare what types of inputs lead to uncertainty for the model
(mid-range probabilities).

6.2 Logistic Regression Model

The sigmoid function takes arbitrarily large and small numbers then maps them between 0 and 1. We
can input a score to this function and receive a probability so that we will be able to take gradient descent
to train the model. The use of the sigmoid function in this way is called the logistic regression model.

Definition 6.2: Logistic Regression Classifier

P (y = +1 | xi, w) = sigmoid(Score(xi)) =
1

1 + e−wTh(xi)

This model allows its objective function to be trained such that P (y = +1 |xi, w) can be maximized for some
input x and weights w. The goal is to maximize correct behavior / classification and minimize incorrect
behavior of the model. Also, it is important to remember that in a binary classification, or for any number
of classes, the probabilities must sum to 1. For binary classification P (y = −1 |xi, w) = 1−P (y = +1 |xi, w).
We can combine these terms and use the logistic regression definition to show this:

P (y = −1 | xi, w) = 1− P (y = +1 | xi, w) (6.15)

= 1− 1

1 + e−wTh(xi)
(6.16)

=
e−wTh(xi)

1 + e−wTh(xi)
(6.17)

In order to train our model we want to maximize the likelihood function. The likelihood function in this
case is:

Definition 6.3: Likelihood Function for Logistic Regression

ℓ(w) =

n∏
i

P (y(i)|x(i), w)

This seems different from regression where previously we wanted to minimize our error from the objective
function by taking the argmin respective to the weights. However, in this case we are maximizing (argmax
respective to weights) the likelihood function (maximizing the likelihood of a correct decision) is essentially
the same as minimizing error.
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ŵ = argmax
w

ℓ(w) (6.18)

= argmax
w

1

n

n∏
i=1

P (y(i)|x(i), w) (6.19)

= argmax
w

1

n

n∑
i=1

log(P (y(i)|x(i), w)) (From product to sum of logs) (6.20)

= argmin
w

1

n

n∑
i=1

− log(P (y(i)|x(i), w)) (Negative Log-Likelihood Loss) (6.21)

When we adjust our weights to find this point it is called the Maximum Likelihood Estimate (MLE). Re-
member that maximizing our likelihood is the same as minimizing our error for our model so that we have
a high probability for a correct prediction and a low probability for incorrect (Definition 6.3).

Definition 6.4: Negative Log-Likelihood Loss Function

L(w) =

n∑
i=1

− log(P (y(i)|x(i), w))

Thus far, everything discussed for classification has been a binary +1 or -1 classification but we can also
represent multi-class classification problems. Previously we used a sigmoid function to turn the score of
some input into a probability, which then uses a Negative Log-Likelihood to measure the loss for the binary
classification. For multi-class classification we will use the softmax function instead of the sigmoid function.
We will still use the Negative Log-Likelihood to measure the loss. The combination of these two is called
cross-entropy loss which we will cover in more depth later in deep learning.

Just like in regression, the logistic regression model can predict simple problems quite well if there is an
easy linear separation between points. But like regression again we can model more complicated problems
by including more features and/or more complex features.

Example(s)

For instance, instead of only using two words as features for our sentiment review classifier:
h1(x) = number of ”awesome” words
h2(x) = number of ”awful” words

We could use more features with 2 being more complex, like this:
h1(x) = number of ”awesome” words
h2(x) = number of ”awful” words

h3(x) = (number of ”awesome” words)2

h4(x) = (number of ”awful” words)2

However, it is important to remember that just like regression a logistic regression model can overfit just
like in regression. To avoid this, just as before, we can use regularization techniques including the L1 and
L2 norms which can change our quality metric to avoid overfitting, and in the case of L1, aid in feature
selection. The coefficient paths will follow similar trajectories so the same ideas of comparing models with
different hyperparameters and regularization techniques using only MSE on validation data still applies.

It is important to remember that while the plots from above show the decision boundaries, we are still repre-
senting our result as a probability / certainty of the model’s output. When using regularization, smoothness
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Figure 6.27: Simple and quadratic classification boundaries

Figure 6.28: Overfit classification boundaries

can be introduced to better represent areas of certainty and uncertainty. Increasing λ corresponding to
increasing the amount of regularization, for L2 especially, will increase the amount of this white / uncertain
area in an attempt to resist overfitting.

Figure 6.29: Regularized plotted probabilities
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6.3 Gradient Descent

As previously stated, unlike a linear regression, we do not have a closed form solution for this problem.
Instead, we must use an iterative method to find the global minimum for the function (equation 6.7) like
gradient descent. In gradient descent, since we cannot compute the solution with a closed form, we must
move towards the minimum step by step.

Algorithm 2 Gradient Descent

Start with random weights w

while w has not converged do w = w − α∆L(w) - α = Learning Rate
- ∆L(w) = Gradient of loss function on weights w

Remember that our learning rate is important as it controls how large of a step we take during gradient
descent where a learning rate that is too small could take too long to converge but a large learning rate
may result in gradient descent never reaching convergence. This process for choosing the learning rate as a
hyperparameter often requires lots of trial and error but is necessary for a fast, yet reliable, gradient descent.
Often we use values that are exponentially spaced out.

Figure 6.30: Effect of different learning rates.

Previously we discussed how different hyperparameters can affect our model’s performance and what we
should be looking for in hyperparameters. For fine-tuning hyperparameters, two methods are commonly
used for finding the optimal values: grid search and random search

Definition 6.5: Grid Search

Start by defining a ”grid” of hyperparameter values and evaluate the model at every position on the
grid returning the argmin of the grid.

Definition 6.6: Random Search

Define a searching domain for possible hyperparameter values and randomly sample points in that
domain evaluating the model each time.

Using these methods we can search for the hyperparameter or set of hyperparameters which results in the
lowest error for the validation set. When we have multiple sets of hyperparameters to choose from in either
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grid or random search, the process is repeated so that every combination is tried together, usually involving
nested for loops.

The learning rate in gradient descent does not need to be fixed, though. Ideally, gradient descent could
descend quickly while still being reliable enough to reach some loss / weight value convergence. Note that
we can either assess convergence by the lack of changing error or more ideally by the lack of changing weight
values. We could start with large step sizes, then progressively lower the learning rate each epoch / iteration
of gradient descent where t is the number of iterations.

αt =
α0

t
(6.22)

To compute the gradient at each iteration for gradient descent (indicating which direction we should go)
we have to calculate the loss from each data point to calculate the gradient of an update. This means that
for large data sets especially, gradient descent can be very computationally expensive, even with optimal
learning rates. One idea for avoiding this is to simply not calculate the loss for each data point at each
iteration. Less work means our process can speed up! Instead, we can sample a small number of points from
the training set, rather than the entire set, to calculate the gradient at each epoch to decrease computational
time. This idea is called stochastic gradient descent. In practice, this is used widely as most often each step
in gradient descent does not require the entire data set and by randomly sampling the model will still be
able to learn well.

The number of points used at each step can vary widely from half of the data set to only 1 single data point.
Clearly, 1 single data point is computationally faster, but might require more iterations to converge, or not
converge at all if the data is particularly noisy. These batch sizes can change in size widely, largely depending
on the noise and size of the data set being trained on and can be thought of as another hyperparameter
similar to the learning rate.

In review of gradient descent and the logistic regression model, we have learned that

• Minimizing the error is the same as maximizing the likelihood in a logistic regression model.

• Predictions are made using probabilities.

• We can use the sigmoid function to turn a score into a probability.

• To prevent overfitting regularization should still be used.

• Gradient descent must be used as there is no closed form solution to our objective function.

• Learning rate in gradient descent are important for gradient descent convergence

• Stochastic gradient descent is a good option when working with large data sets.

In the following chapter other classification models will be discussed.



Chapter 7

Näıve Bayes and Decision Trees
Slides (pdf) Video (Panopto)

In the previous chapter we dove into the workings of the Logistic Regression Model. As you might remember,
the Logistic Regression model utilizes the sigmoid function to map out arbitrary input values to output values
between 0 and 1. How close an output was to either 0 or 1 gave us a certainty about classifying it, while
an output closer to 0.5 meant higher ambiguity. In this chapter we will introduce a another way to explore
these probabilities.

7.1 Näıve Bayes

Näıve Bayes is an alternative way to compute a class probability for a given input. The formula for a given
input x and its output class y is as follows:

Definition 7.1: Bayes Rule

Bayes Theorem computes the probability of a class using the formula below. If we want to compute
the probability that y is a positive review given review x, we multiply the probability of x given that
y is positive with the probability that y is positive, and divide it with the probability of x alone.

P (y = +1|x) = P (x|y=+1)P (y=+1)
P (x)

We use this equation to compute how likely a review is positive or negative:

We may discard the divisor, as we are only comparing which class’s probability is greater. Now, think about
how you would approach this problem. We would need to plug in a probability for each part of the Bayes
Theorem. Do we know P(”The sushi everything else was awesome!” | y=+1), the probability of this specific
review, given that we are told the review is positive? Most likely not, as the sentence ”The sushi everything
else was awesome!” is unique, and it only appears in one review.

Thus, we make the näıve assumption that every word’s probability is independent from each other: Instead
of computing this entire sentence’s probability, we compute the probability of every word occuring alongside
each other. So we compute the probability of ”The” given the review is positive AND the probability of
”sushi” given the review is positive, and so forth:

P(”The sushi everything else was awesome!” | y=+1) = P(The | y=+1) * P(sushi | y=+1) * P( | y=+1) *
P(everything | y=+1) * P(else | y=+1) * P(was | y=+1) * P(awesome | y=+1)

Our final model is thus:

P (y|x1, x2, x3, ..., xd) =
∏d

j=1 P (xj |y)P (y)

There are a number of issues with this approach. First, since we are multiplying so many probabilities,
our final product will be a very long decimal number. Since this decimal number is so long, we might end
up with floating point overflow. We can overcome this by taking the log of each probabilities, such that
we compute a sum instead of a product. Another issue that we encounter with using products is that if
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we encounter a word we haven’t seen before, its probability will be 0 and so the entire product will be 0.
Laplacian Smoothing, adding a constant to each term to avoid multiplying by 0, can be used in this case.

Let us now compare the two models we have learned for computing classification probabilities thus far:

Logistic Regression:
P (y = +1|x,w) = 1

1+e−wT h(xi)

Näıve Bayes:
P (y = +1|x1, x2, x3, ..., xd) =

∏d
j=1 P (xj |y = +1)P (y = +1)

While the Logistic Regression model is discriminative, the Näıve Bayes model is generative.

Definition 7.2: Discriminative Model

A model is discriminative when it only cares about finding and optimizing a decision boundary.

Definition 7.3: Generative Model

A model is generative when it defines a distribution for generating x.

Figure 7.31: On the left visualize a discriminative model, where we only care about optimizing a decision
boundary. On the right, we have a generative mode, where the likelihood of each class is also captured.

The Näıve Bayes model is considered a generative model because it computes each input’s probability given
the output P (xj |y = +1), so it can be used to map out a probability distribution for each x. This is unlike
the Logistic Regression model, that does not compute the probability of each input, but rather solely the
probability of the output given the input. Usually a discriminative model like Logistic Regression will do
better, but generative models are useful for modeling distributions.

7.2 Decision Trees

The next application of machine learning we will explore will be decision trees. Take a look at the decision
tree below:

Definition 7.4: Decision Tree

A decision tree is a series of questions that lead to multiple outcomes such that we can explore each
question further.

Decision trees are most applicable for nonlinear decision boundaries that occur along a set of distinct criteria.
Let’s consider a Loan Application for buying a house as an example. To make an informed decision about a
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Figure 7.32: A decision tree on COVID-19 safety guidelines based on a series of questions. Source: Holzer

candidate, a loan application may ask about credit history, income, the lease term, and personal information.
So, an example dataset might look like this:

Figure 7.33: Let our training dataset be n number of inputs and output pairs. Each input has 3 features:
credit, term and income and one output, y.

After training on the train dataset, we aim to reach an accurate prediction ŷ of whether a new candidate is
safe or risky based on their loan application:

A decision tree for this example can be set up like so:

https://www.holzer.org/coronavirus-covid-19-information/
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Figure 7.34: A loan application is fed into the model as input xi. The output will be either ŷi = +1 (safe)
or ŷi = −1 (risky).

Figure 7.35: A decision tree for determining whether a candidate is safe or risky to lend a loan to. The
branch/internal nodes split into possible values of a feature, while the leaf nodes are the final decision, the
output class.

Definition 7.5: Tree Terminology

A Tree in computer science is a datastructure characterized by an interconnected set of nodes, where
no connection between nodes creates a cycle.
Node: any datapoint in the tree.
Root: the first datapoint in the tree.
Leaf : one of the last datapoints in the tree.

In this example, the model first splits up loan applications based on credit history. If the credit history is
excellent, a candidate’s application is considered safe. However, if their credit history is poor, the tree splits
into a more complex structure as more questions are required to determine if the candidate should receive a
loan.

At this point, you may be wondering why we use credit history as the first criteria to judge an applicant,
why we split into further questions on certain nodes, and how a lease term can determine an application’s
safety. These are all choices our model made to optimize its tree such that the tree would output the most
probably prediction ŷ based on its training on the train data. We will now examine how these choices are
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made in the building of a decision tree.

7.2.1 Building the Decision Tree

How does a model decide on the optimal decision tree structure? Recall that our training data is what our
machine learning model uses to learn on. Given a set of x and y training pairs, we will build a decision tree
that aims to lead as many train inputs x to their correct train outputs y as would perform the best in the
real world. Since we want to avoid overfitting on the train set, this doesn’t necessarily mean that we will
build our tree such that every training input x will always lead to its exact correct training output y, so we
will also have to decide a good stopping point for growing our tree. The end goal is that when new, unseen
test data x is fed into the tree, we can achieve a decently accurate prediction ŷ.

Let’s first start with the very first node in our tree, the root node:

Figure 7.36: The root node of the decision tree stores information about the safe loans and the risky loans.
In total, there are 9 loan applications in our dataset.

Since we have just one node, this one node is the root node and it is a leaf node at the same time. In a
decision tree, the decisions are made at the leaf nodes. The outputted decision is based on the majority
class of the training set inside that node. So if our tree is just a root, then our tree would always output
”Safe” since there are 6 safe loans in the training set and 3 risky loans. So, on future unseen test data, we
will always output ”Safe”.

On the train data, this gives us a 6/9 = 66.66% accuracy. If we decide this isn’t good enough, we will add a
second layer to the tree. This second layer is a decision stump

Definition 7.6: Decision Stump

In a Decision Tree, a stump is a point at which a node splits into further decision categories.

Suppose then, that we decide to split on a candidate’s credit history. Credit history can be either ”excellent”,
”fair” or ”poor”.

Since we split on credit history, we add a node to our tree for each type of credit history. For each of these
nodes, we now store how many of the loans are safe and how many are risky. Recall in our original dataset
in Figure 8.48 there are 2 safe loans and 0 risky loans that have excellent credit history, 3 safe loans and 1
risky loan with fair credit history, and 1 safe loans and 2 risky loans with poor credit history.

If we end our tree here, we must finish it off with leaf nodes that have final output classes in them as the
final decisions. Remember that these are the majorities of each node.
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Figure 7.37: The tree splits the training data into different levels of credit history.

Figure 7.38: The majority class of each node determines the final output.

Now, our training accuracy is 7/9 = 77.77% since 7 out of the 9 loan applications are correctly classified,
and 2 are not. What if we were to split on Term first instead of Credit? Let’s compare the two choices:

Figure 7.39: A split on Credit versus a split on Term in the decision tree.

In Choice 1 when we split on credit, we have a 7/9 = 77.77% accuracy. Let’s calculate the accuracy for
Choice 2. For a term of 3 years, we have 4 safe loans and 1 risky loan. Safe loans make up the majority here,
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so anything with a term of 3 years will be classified as ”Safe”. For a term of 5 years, there are 2 safe loans
and 2 risky loans. Since there is a tie, we can choose either class. Let’s designate the output of a 5 year term
as a ”Risky” loan. Since 4 loan applications for 3 year terms are classified as ”Safe” when they actually are
and 2 loan applications for 5 year terms are classified as ”Risky” when they actually are, 4 + 2 = 6 loan
applications are correctly classified. 6/9 = 66.66% of loan applications are classified correctly. Likewise, we
can also use an error metric here: 33.33% of loan applications are classified incorrectly if we split on the Term
feature, and 22.22% of loan applications are classified incorrectly if we split on the Credit feature. Since the
Credit feature split yields a lower error rate, our tree will split on Credit first. This decision making is how
the model splits a node in a tree and it can be summarized by the following pseudocode:

Figure 7.40: The algorithm for selecting the best feature a node should be split on.

Our model will choose between features to split on for every node in the tree, until the number of datapoints
in each node or the error rate reaches a certain threshold to stop beuilding the tree. This algorithm can be
summarized as:

Figure 7.41: The algorithm for building the tree.

Notice that the Decision Tree algorithm is greedy: It aims to optimize the classification error at each node.
As a result, the final result won;t be globally optimal, but it guarantees computational efficiency. Also take
note that the Decision Tree algorithm is recursive: From the current node, if we decide to further expand
the tree, we repeat the same operations in the child node.

How do we decide when to stop? Going back to Figure 12.71, we observe that for applicants with excellent
credit history, all two of them would be safe loans and none of them would be risky. So, the majority class
classifier would suffice here, because it would yield no error. But when the Credit is fair or poor, we had
some safe loans and some risky loans. As there is no absolute majority for either of these nodes, we could
recursively treat them as roots of their own tree which we continue to build below. Thus by further splitting
these nodes, we grow a more complex and precise path in our tree with the hopes of lowering the error rate.

We can set a certain error threshold and stop growing our tree until every leaf yields that error or less.
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Figure 7.42: Every subtree build from each node will be a subset of the original trainset where the condition
of the node is true for the remainder of the tree.

7.2.2 Numeric v.s. Categorical Features

In our Loan Application example, we have been looking at data without numeric value. For example, a
candidate’s credit history can be of the values ”good”, ”fair”, or ”poor”. There are 3 main datatypes a
machine learning algorithm can learn from.

Definition 7.7: Numeric

Numeric data is data that has numerical value, such as square footage of a house.

Definition 7.8: Ordinal

Ordinal data is data that has ordered categories, even if it is not numerical. Credit score is ordinal,
because you can rank ”good”, ”fair”, and ”bad”.

Definition 7.9: Nominal

Nominal data is data that has no numeric value and cannot be ordered. Colors such as ”red”,
”blue”, ”green” cannot be ranked.

Datatypes that are not numeric like ordinal and nominal data are categorical.

Some decision trees may or may not require all numerical inputs depending on their implementation. How-
ever, in models that use differentiable loss functions (like Linear Regression / Logistic Regression, some
forms of decision trees), you need to transform categorical data.

Transforming Ordinal Data: Rank the values (bad = 0, fair = 1, good = 2).
Transforming Nominal Data: Use one-hot encoding.
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Definition 7.10: One-Hot Encoding

One-hot encoding is a transformation technique of nominal data. For a feature, it assigns a digit
for every possible category that feature can be. For example, for a Color feature, we can assign ”red”
to the first digit, ”blue” to the second digit, and ”green” to the third. So, red would be 100, blue
would be 010, and green would be 001.

It is important to note that many nominal feature do come in the form of a number, yet they cannot be
ordered. An example of this is zip code when estimating house prices. 10018 is a zip code in Manhattan,
NY while 98105 is a zip code in Seattle, WA. If we use zip code as a feature of a linear regression model to
predict house prices, this does not mean that houses in Seattle are more expensive than those in Manhattan.

7.2.3 Threshold Split for Numeric Features

For numeric features, it doesn’t make sense to have individual branches in our tree for every single numerical
value that feature could hold. So, we use an inequality instead. One branch will be less than a certain number
v, and the other branch can be greater than or equal to. Given a range of numerical values from a single
feature, we can choose the best threshold to make this split by calculating the classification error for every
possible split that occurs exactly in between each of the possible numerical values v1, v2, ..., vn and select
the threshold yielding the lowest error. For more precision, we can split these inequalities further. There is
a limitation to using classification error: Two different splits can give us the same error, so continuous loss
functions like entropy loss or Gini impurity loss (which we will not talk about in this text) are used.

Figure 7.43: For a decision tree, a splitting of a numeric feature will always be along the axis.

Figure 7.44: If we decide to split further, we continue to split along the axes.
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7.2.4 Advantages of Decision Trees

1. Decision Trees are easy to interpret

2. They can handle both continuous and categorical variables without preprocessing

3. They do not require normalization

4. They can create non-linear decision boundaries

5. They can handle missing values

7.2.5 Disadvantages of Decision Trees

1. Deep Decision trees are prone to overfitting. They are not suitable for large datasets for this reason.

2. The decision boundaries are unstable because adding a new datapoint to our trainset can cause the
entire tree to regenerate.

3. The decision boundaries must be axis-parallel.

To overcome overfitting, we can implement conditions for early stopping such as establishing a fixed depth
length, setting a maximum number of nodes, or halting growth if error does not considerably decrease. We
can also prune our trees by cutting off some nodes.



Chapter 8

Ensemble Methods
Slides (pdf) Video (Panopto)

So far in our exploration of Classification, we have covered Logistic Regression, Bayes Theorem, and Decision
Trees as candidates for modeling data that is intended to be separated into classes. With the Decision Tree
approach, we can model our data in a much more interpretable way, but Decision Trees are not known
for reaching stellar accuracy. In this chapter we will discuss the modifications done unto Decision Trees to
improve their performance. Specifically, we will discuss the Ensemble Method.

8.1 Ensemble Method

The basic idea behind the Ensemble Method is to combine a collection of models in hopes that their unity
will achieve better performance rather than designing a new model from scratch. This collection of models
is referred to as a model ensemble.

Definition 8.1: Model Ensemble

A model ensemble is a collection of (generally weak) models that are combined in such a way to
create a more powerful model.

With trees, this is done in via either the Random Forest (Bagging) method, or AdaBoost (Boosting).

8.1.1 Random Forest

The Random Forest method, also called Bagging, utilizes a collection of Decision Trees. Each decision tree
casts a ”vote” for a prediction based on an input and the ensemble predicts the majority vote of all of its
trees. Each tree is built from a subset of the training dataset by random sampling the training dataset with
replacement. This technique is also called bootstrapping.

When training the decision trees on the bootstrapped samples, the goal is to build very deep overfitting trees.
Each tree thus has very high variance. As multiple models are used for the final prediction in the ensemble,
the overall outcome is a model with low bias. This is because if many overfitting models are averaged out,
the result is a model that does not overfit to any one sample so the ensemble has low bias and lower variance.
So, while each tree is a robust modeling of a data sample, the united model ensemble is more powerful.

Example(s)

Random Forest has many applications in image processing and object detection. Microsoft used the
Random Forest modeling technique in their Kinect system to identify the ”pose” of a person from
the depth camera.

The advantage of using a Random Forest is that it is versatile, and has many applications in classification,
regression, and clustering. It is also low-maintenance and hence easily interpretable: There are few to none
hyper-parameters in most cases, and generally more trees gives us better performance. Random Forest is
also efficient, because the trees, as separate components, may be trained in parallel. So instead of waiting
for a single complex model to train one step at a time as we may do with other models, we can assign each
tree of the ensemble to a different machine so that multiple trees are trained simultaneously.
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Figure 8.45: A subset of the original dataset is randomly selected with replacement for every tree we intend
to build.

Figure 8.46: Each tree predicts its own final decision based on the input and the majority prediction is
selected by the ensemble.

8.1.2 AdaBoost

Recall that a decision stump in a tree is a node that splits into multiple decisions. When we say ”stump”
we will refer to a tree of one-level. As opposed to growing very deep and overfitting trees in Random Forest,
Adaboost utilizes stumps. So, the model ensemble for Adaboost is a collection of one-level trees. Each of
these trees are assigned a weight. A weighted majority of votes from these decision stumps is what determines
the ensemble’s final prediction.

A key difference between Random Forest and AdaBoost is that AdaBoost is sequential, while Random Forest
can train each of its trees in parallel. This is because in AdaBoost, each stump belongs to a certain order,
and the first stump’s decision impacts the second, which impacts the third, and so forth.
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Training AdaBoost

When training AdaBoost, the error of the previous stump affects the learning of the next stump. To do this,
two types of weights are stored:

1. ŵt: the weight of each stump t.

2. αi: the weight of each datapoint i.

The training process of AdaBoost is as follows:

1. Decide on our stumps: the more features our data has, the more stumps we will need in AdaBoost
since we will have to make at least one decision from each feature. We will call the total set of stumps
T , and each stump in T is t.

2. Initialize the weights for all the datapoints in our training set αi to be equal to each other.

3. For every stump t in T :

(a) Learn a final prediction f̂t(x) based on α, the weights of the datapoints used in t.

(b) Compute the error of t’s prediction f̂t(x). As AdaBoost introduces weights to datapoints, we
must compute a weighted error:

WeightedError(ft) =

∑n
i=1 αi||{f̂t(xi) ̸= yi}∑n

i=1 αi
(8.23)

This equation is simply taking the weighted sum of all the misclassified datapoints and then
dividing it by the total weight of all the datapoints. In the weighted error, every datapoint’s
unique weight is used to compute the total error.

(c) Based on the error rate of prediction f̂t(x), update model t’s weight ŵt. If t yields a low error,
then we want ŵt to be greater, but if the error is high, then the weight should be low. This is
because we want more better performing models to have a higher influence in the final decision
of the ensemble. The formula for computing the model weight is:

ŵt =
1

2
ln(

1−WeightedError(f̂t)

WeightedError(f̂t)
) (8.24)

(d) Recompute the datapoint weights α. AdaBoost will increase the weight of those datapoints it
misclassified, and decrease the weights of those it classified correctly. This way, misclassified
datapoints are more sensitively accounted for in the training of the next stump. This is the
notation for updating the weights:

αi ←
{

αie
−ŵt if f̂t(xi) = yi

αie
ŵt if f̂t(xi) ̸= yi

4. After we have computed f̂t(x) for every stump t, we take the sign of the model outputs’ weighted sum
like so:

ŷ = F̂ (x) = sign(

T∑
t=1

ŵtf̂t(x)) (8.25)

Real-Valued Features

If we are splitting real-valued numeric features in our AdaBoost method, the algorithm is more or less the
same but the splits must happen dependent on the weights of each numerical value.
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Normalizing Weights

Generally, the weights for some datapoints can get very large or very small in magnitude due to how the
data is laid out. If our numbers are on wildly different scales, we may run in to problems when running
AdaBoost on our machine due to the finite precision of computers when it comes to real numbers. To resolve
this, we normalize all the weights to sum to 1:

αi ←
αi∑n
j=1 αj

(8.26)

Visualizing AdaBoost

Recall that all the weights for the datapoints are initialized to be equal to each other. After training on one
stump, we compute new weights αi based on the errors of f̂1.

Figure 8.47: After training on the first stump, misclassified datapoints are given a greater weight (drawn
larger).

The new weights αi are used to learn the best stump that minimizes the weighted classification error. Then,
update the weights again based on the error from f̂2.

Figure 8.48: f̂2 is predicted based on the weights computed in the previous iteration.

If we plot what the predictions would be for each point, we get something that looks like this:

Eventually, we can achieve a training error of 0 with a large enough set of weak learners.

The example above illustrates that AdaBoost is still capable of overfitting!

AdaBoost Theorem

The core idea behind the Ensemble Method is that a collection of weaker models combined will yield a more
powerful model. This is the case with AdaBoost, where a series of weak single-stump trees can gradually
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Figure 8.49: The weighted sum of the models t = 1 and t = 2 yields the weighted decision boundary on the
right.

Figure 8.50: Decision boundary for t = 30.

reduce the training error of the overall model. Let’s compare AdaBoost to a standard Decision Tree.

While a Decision Tree can significantly reduce the error of its training set, we see that this is at the expense
of severe overfitting. So a Decision Tree lacks the ability to generalize to unseen test data. However, due to
the internal mechanisms of AdaBoost, we avoid this severe overfitting and are more likely to achieve a lower
test error. AdaBoost is also capable of overfitting as we have seen in the previous example, but in general
the test error will stabilize. To determine the best T to avoid overfitting and underfitting, we must treat T
as a hyper-parameter and compare different T’s with the intent of minimizing the validation error.

Applications of AdaBoost

Boosting, AdaBoost, and other variants like Gradient Boost are some of the most successful models to date.
They are extrmeley useful in computer vision, as they are the standard for face detection. Most industry
Machine Learning systems use model ensembles.

To conclude, AdaBoost is a powerful model ensemble technique and it typically does better than Random
Forest with the same number of trees. However, while you do not have to tune parameters for AdaBoost
(besides selecting T ), boosting is sequential, so trees cannot be trained in parallel.
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Figure 8.51: The train and test error curves for a standard Decision Tree and AdaBoost.



Chapter 10

Fairness in ML
Slides (pdf) Video (Panopto)

In this chapter, we will look at more examples of bias and fairness in Machine Learning. We will dive deeper
into the motivating examples for why one should care about bias, multiple case studies of bias sources,
the pillars of trustworthy machine learning, how to tackle bias in machine learning, and finally real world
examples of tackling bias.

10.1 Examples of Bias

10.1.1 COMPAS Recidivism

COMPAS is a tool used to predict recidivism, the tendency of a convicted criminal to reoffend and it has
been used in almost all 50 states. In 2016, ProPublica investigated the bias COMPAS exhibited against
black people and concluded a statistically signficant difference in prediction scores for people of different
races committing the same crimes.

Figure 10.52: Shown above is one example out of the thousands investigated by ProPublica of criminals of
the same offense assigned different recidivism scores. Both Prater and Borden were convicted of stealing a
bike. While Prater was given a recidivism score of ”3”, Borden received an ”8”.
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10.1.2 Amazon Recruiting Algorithm

Amazon discovered in 2015 that their recruiting algorithm was biased against women. Their model was
trained on the résumés of previously hired employees, so whether a new candidate passed the primary
screening was dependent on how the model rated their résumé. The company couldn’t find a way to fix the
bias in their model so they got rid of its use completely.

10.1.3 Healthcare Risk Management

In 2019 the Scientific American published an article on an unnamed software deployed by American healthcare
companies to determine which patients qualified for ”high-risk care management”. The software was used on
200 million patients in the US. Frequency of health care usage and medical spending were factors the model
used to determine qualifying patients, and as a result black patients, while suffering from chronic illness at
higher rates, would qualify less.

10.1.4 Predictive Policing

PredPol, a software company specialized in predicting policing, made predictions on future crime based
on existing crime data. Criticized by several academics, PredPol was found to be target black and latinx
communities. As more police were deployed in certain neighborhoods, members of those neighborhoods were
watched more frequently and thus arrested for more crimes, even if these crimes were minor. This data was
used to further train the model, creating a feedback loop, thereby further biasing the model.

10.1.5 Amazon Prime

Amazon Prime’s one day delivery service was found to exclude predominantly black neighborhoods across
the United States. Neighborhood income was used to determine where Amazon warehouses should be built.
As Amazon is a large company, it quickly came under fire by major news outlets. To avoid a bad public
image, the company quickly vowed to fill racial gaps in its delivery services.

10.1.6 Facebook Ads

In 2019 MIT published a study showcasing Facebook’s biased algorithm for ads. While men were more
likely to be shown ads for careers like being a doctor or an engineer, women were shown ads for nursing and
becoming secretaries. While white people were shown ads for home sales minorities were shown rentals.

10.1.7 Google Ads

In 2013 Latanya Sweeny, a Harvard Professor, found out that Googling ”black-sounding” names were 25%
more likely to trigger ads for finding criminal records in someone’s background.

10.1.8 Face Detection

Computer scientist and activist Joy Buolamwini began a project that became her MIT Thesis: Gender
Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers.
The research found that many of the leading facial classification technologies used in a variety of applications
today classify black women’s faces nearly 30% less accurately than their white male counterparts.

10.1.9 Nikon Camera Blink Detection

Nikon’s blink detection was found to falsely classify Asian people as blinking.

https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
https://www.scientificamerican.com/article/racial-bias-found-in-a-major-health-care-risk-algorithm/
https://www.scientificamerican.com/article/racial-bias-found-in-a-major-health-care-risk-algorithm/
https://www.theverge.com/2021/12/6/22814409/go-read-this-gizmodo-analysis-predpol-software-disproportionate-algorithm
https://www.theverge.com/2021/12/6/22814409/go-read-this-gizmodo-analysis-predpol-software-disproportionate-algorithm
https://www.bloomberg.com/news/articles/2016-05-06/amazon-to-fill-racial-gaps-in-same-day-delivery-after-complaints
https://www.technologyreview.com/2019/04/05/1175/facebook-algorithm-discriminates-ai-bias/
https://www.bostonglobe.com/business/2013/02/06/harvard-professor-spots-web-search-bias/PtOgSh1ivTZMfyEGj00X4I/story.html
https://www.bostonglobe.com/business/2013/02/06/harvard-professor-spots-web-search-bias/PtOgSh1ivTZMfyEGj00X4I/story.html


[DRAFT: Content subject to change] 10.10 Introduction to Machine Learning (Non-Majors) 10-55

Figure 10.53: Harvard Professor Dr. Latanya Sweeney.

Figure 10.54: Activist and computer scientist Joy Buolamwini. You can watch Buolwamwini’s interview
here.

10.2 Source of Bias: Case Studies

Now that we have gone over dire examples of why fairness in ML matters, we will examine some of the sources
of bias. First, let’s review some different causes that can lead to bias. Recall that there is historical bias,
measurement bias representation bias, deployment bias, evaluation bias.

We will look at examples of case studies where such biases are found.

https://www.youtube.com/watch?v=rWMLcNaWfe0
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Figure 10.55: Nikon’s failure to correctly detect Asian faces.

Example(s)

Case Study: Distaster Relief
Goal: Accurately assess damage and send appropriate relief resources.
Data: Twitter posts, facebook posts goecoded with coordinates within disaster area, keywords and
hashtags related to the storm.
Analysis: Intensity and type of damage by neighborhood.
Actions: Assessment and allocate relief effort (type and amount).
Constraints: Limited resources for relief efforts.

Can you find some problems with this method of resource allocation?
1. Representation bias: Not everyone has access to social media.
2. Historical bias: Wealthier neighborhoods, with more infrastructure, will report more damage.

Example(s)

Case Study: Personality Detection
This case study is based on a real example called Faceception, an Israeli startup is selling a software
that can classify personalities with 80% accuracy.
Goal: Detect if someone is a terrorist or not.
Data: People’s faces.
Analysis: IQ, profession, skills, personality, terrorist activity.
Actions: US Homeland Security body purchased the software in 2016.
Constraints: Limited pool of faces and personality for training data.

Can you find some problems with this method?
1. Representation bias: One country is not representative of the faces and personalities around

the world.
2. Historical bias: In media headlines middle eastern people are labeled as ”terrorists” while

white terrorists are always labeled as ”troubled young man with mental health problems”. If
this is the labeling used for the dataset, then the model is trained on skewed historical bias.
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Example(s)

Case Study: Sexuality Detection
This case study is also based on a real example. A Stanford professor developed a facial recognition
system using 75000 photos from online dating profiles of all white people to label people’s sexualities.
The model reaches 71% accuracy for women and 81% accuracy for men.

Goal: Detect if someone is gay or straight.
Data: People’s faces.
Analysis: Sexuality based on facial structure.
Actions: The professor claims that the research would help people, but he said in an interview
that he was ”flattered” that the Russian Prime Minister and the Russian cabinet convened with
him to discuss his technology. In 2018 Christopher Wylie, a whistleblower, revealed that Cambridge
Analytica was using this technology as an ”instrument of psychological warfare”.

The problems and constraints with this application of ML are obvious.

10.3 Pillars of Trustworthy ML

As you can see, machine learning is a powerful double-edged sword. While the technology has the potential
to do good, it can also have disastrous consequences if handled by the wrong people. As an ML developer
in the making, it is your responsibility to employ the Pillars of Trustworthy ML so that we can transform
this space into one that honors an intersectionally empowering future.

10.3.1 Pillar 1: Privacy

Cloud photo storage company Ever AI sold the contents of thousands of people’s private camera rolls to
surveillance agencies to train facial recognition software. Upon accusations, Ever AI renamed itself to
Paravision to claim that they had never done what Ever AI did. Before 2020 they made $29 million in
profits before finally busted by the ACLU. Thus, privacy is imperative for an ethical ML system.

10.3.2 Pillar 2: Ethics

In 2018, CEO Matthew Zeiler disclosed that computer vision software company Clarifai was selling software
to the Pentagon for autonomous weapons. Clarifai was aiming to use computer vision technologies to auto-
detect enemies on a battlefield. Zeiler was forced to disclose the news thanks to company whistleblower Liz
O’Sullivan. By whistleblowing the usages of Clarifai, O’Sullivan exemplified ethics in ML.

10.3.3 Pillar 3: Interpretability

Interpretability is the ability to explain why a model makes a certain decision. An example of an inter-
pretability problem is when a bank uses an ML model to decide which customers’ loan request should be
approved. A customer who earnestly needed money asks why their loan request did not get approved and
what they can do to get it approved. To answer to this customer, the bank would have to dissect and
understand how its model made its decision. This pillar is especially relevant to the healthcare management
example we previously showed.

https://www.theguardian.com/technology/2018/jul/07/artificial-intelligence-can-tell-your-sexuality-politics-surveillance-paul-lewis
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10.3.4 Pillar 4: Robustness

Robustness will test how consistently reliable a model is. While an image of a pig is classified correctly at
first, adding random noise to the image confuses the model and the model classifies the pig as an airplane.
This is an especially large problem for facial detection if a model is not exposed to a diverse enough set of
face types.

10.4 Tackling Bias

”Fairness” can take on a number of definitions depending on the context. In order to conduct a context-aware
bias mitigation, we can follow the practices of each stages of processing:

1. Pre-processing: Resampling of rows of the data, reweighing rows of the data, flipping the class labels
across groups, and omitting sensitive variables or proxies.

2. : In-processing: Modifying the loss function to account for fairness constraints with respect to an
analysis of false positives and false negatives.

3. Post-processing: Adjust the outputs of the model to abide by a fairness criteria.

10.5 Real World Examples of Tackling Bias



Chapter 11

Clustering
Slides (pdf) Video (Panopto)

11.1 Introduction to clustering

So far we have discussed many different supervised learning algorithms, from linear regression to decision
trees. Remember, supervised learning is where the data inputs map to a known output. In this chapter, we
will learn about our first unsupervised learning algorithm, meaning it uses an unlabeled data set to form
predictions.

Definition 11.1: Clustering

Clustering is an unsupervised and automatic process of trying to identify and group similar data
points within a larger data set.

Although the primary use of clustering is for unlabeled data, we can still use clustering algorithms to fit
to known labels, like ”world events” or ”sports”. This supervised learning version of clustering, as we have
learned previously, is classification.

Example(s)

Clustering has a number of uses, varying from simple to complex:
• Classifying news article topics, for example between ”world events” and ”sports”.
• Clustering groups of people according to their genome.
• Recommending entertainment for consumers using user preferences. However, topics and pref-
erences are often not well defined, making this problem challenging.

Clustering uses the given inputs, for example x1, x2, ..., xn, and attempts to learn the structure from the
unlabeled data X and assign them to groups. If we decide that there are 3 groups we wish to cluster, the
outputs would be y1, y2, ..., yn where yi is either one of those three classes, for example 1, 2, or 3. More
formally, clustering uses a given xi and assigns yi ∈ [1, 2, , ..., k] where k is the number of clusters to be
identified. A cluster is usually based on the closest centroid, which is the average for some group of data.

As usual, we should define some objective which determines how good each of the assignments are. One
example could be euclidean distance from the centroid, such that points far away from a center would have
high error, while those very close to a center have low error. In this case a close distance would represent a
strong similarity between points. However, it is important to remember that clustering is not always straight
forward and distance alone might not determine specific clusters.

11.2 K-Means

11.2.1 Overview of K-Means algorithm

K-means is the first clustering algorithm we will discuss. The main objective for k-means is to assign points
to a cluster based off the point’s distance from a centroid. This means that a shorter distance will create
better clustering when using this algorithm.

11-59

https://courses.cs.washington.edu/courses/cse416/22sp/lectures/12/12.pdf
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=25e5dc37-2a25-4ee7-b938-ae8c012bf19d


11-60 Introduction to Machine Learning (Non-Majors) 11.11 [DRAFT: Content subject to change]]

Figure 11.56: Unlabeled input data on the left with 3 defined clusters on the right.

Figure 11.57: Many different examples of more complicated clusters.

Algorithm 3 K-Means Clustering

Given a data set of n data points and a particular choice of k
Step 0: Initialize k centroids randomly to points in the data set

while not converged do Step 1: Assign each example to its closest cluster centroid
Step 2: Update the centroids to be the average of all the points assigned to that cluster return cluster
assignments as closest centroid to each data point

Above is the basic outline for K-Means. However, there are many different ways to approach each of the
steps, depending on the use case.

• Step 0: Usually we initialize the centroids µ1, µ2, ..., µk randomly, however there are smarter initial-
ization techniques which will be discussed below.

• Step 1: We assign each example to its closest centroid such that:

yi = argmin
j
||µi − xi||22

• Step 2: Now we update the centroids to be the mean of all the point assignments from the previous
step (i.e. the center of mass for the cluster).

µj =

∑n
i=1 1(yi = j)xi∑n
i=1 1(yi = j)
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• Convergence: There are multiple different stopping conditions. Some include:

– When the cluster assignments haven’t changed.

– Centroids haven’t changed locations.

– Some number of max iterations have passed.

It is also important to remember that K-Means is heavily dependent on its starting assignments so the
algorithm may only converge to a local optima rather than a global one. To get around this, we can
either use a smarter initialization compared to random and/or by running K-Means multiple times to
ensure we arrive at similar results across trials.

Figure 11.58: K-Means algorithm visualized.

11.2.2 Choosing k in K-Means

It is also important to remember that k in K-Means is a hyperparameter which defines the number of clusters
to find so that results will be very different for different values of k. Choosing the correct k is very important
as a k that is too low, for example, could be grouping things together when they really are distinct groups.
Illustrating this, the green and blue groups from the example above would likely get grouped together if
k = 4, instead of the correct choice of k = 5. Following that same logic, a k that is too high will put 2 (or
more) groups together when they should be one.

Definition 11.2: Heterogeneity Objective

argmin
y,µ

∑
j=1

k
∑

i = 1n1(yi = j)||µi − xi||22

This is the objective that K-Means uses, which is equivalent to minimizing the distance from each
centroid to its group of examples.
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Figure 11.59: Example of choosing different values of k. (k = 5 on right and k = 4 on left)

However, the choice of k is often not easy to see, either because the dimension of the data is high or it is not
easy to visualize the data. One way to approach this problem is to use a validation set / k-fold approach
like discussed in previous chapters to see which k is the best choice for clustering. This is a good idea but
slightly different when put into practice. Clustering is different than trying to solve for the quality metric’s
minimum. If that was our goal, the optimum choice of k would be n, the number of data points, such that
the total distance from each point to its centroid is 0. Clearly, this is not helpful in terms of clustering.

Classification quality metrics do not apply to clustering. Classification learns from minimizing the error
between a prediction and an actual label while in clustering the “labels” don’t have meaning, so it is up to
human input to determine what good clustering is and isn’t.

Our goal of minimizing error, similar to the idea of overfitting from previous chapters, has caveats. One
way we can approach using a validation set with hard-to-visualize data is the elbow method. We plot the
quality metric across different values of k (multiple times for each k due to reasons stated above) and see
where there is an ”elbow” in the graph. This corresponds to reaching the optimal k value, as the error will
drop sharply, but after adding more points the error should only reduce slightly run after run.

Figure 11.60: Choosing the best k using the elbow method.

Example(s)

Movies: choosing k when clustering movies should most likely be used with a pre-determined number
categories as a human choice, rather than chasing the k which has the lowest validation set loss.

There are a number of other methods to choose k also: Bayesian Information Criterion, Silhouette, etc.
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11.2.3 Effects of Initialization in K-Means

As previously mentioned, the initialization of the centroids in K-Means can have a large impact on the
outcome of the clusters. First, it is important to remember that the label assigned in K-Means does not have
any meaning. We know that runs of K-Means work well if the same groups of points are assigned together,
but not necessarily if a certain centroid is always assigned to the same group of points.

Figure 11.61: Initialization can affect cluster outcomes.

Given that K-Means is quite simple and only considers centralizing the points which are closest to a given
centroid, K-Means might get stuck in a local optima rather than a global. Ideally we would like to initialize
such that centroids start far away from one another, rather than simply at random, so that two centroids
don’t converge to one group, leaving 2 ”real” groups potentially clustered as 1.

11.3 K-Means++

To initialize points with a wide spread we could factor in whether we choose a point to be an initialization
based on how far away that point is from other centroids we have already chosen during the initialization.
Using this we can initialize to a point we were are more likely to be closer to the optimal solution than
purely at random. This can lead to faster and more accurate/reliable convergence of centroids. This type
of initialization will also likely reach a global minima rather than only a local. However, note that this
initialization is more computationally expensive at the beginning compared to random initialization as we
have to keep track of each points distance to its nearest centroid and update those values each time we select
of new one.

Algorithm 4 K-Means++ Initialization

Step 1: Choose first centroid µ1 uniformly at random from dataset

for j from 1 to k do Step 2: For current set of centroids compute the distance between each datapoint and
its closest centroid
Step 3: Choose new centroid µj from the remaining data points with probability of xi being chosen propor-
tional to distance between xi and its closest centroid (it’s current assigned center) Step 4: run K-Means
from intialized centroids as normal

11.4 Caveats of K-Means

K-Means is a powerful tool for clustering however, like most ML algorithms, it is not perfect for every
scenario. K-Means works well for hyper-spherical clusters of the same size but when the true clusters
don’t look like that, it can produce less than ideal results.

To wrap up our introduction to clustering, there are a couple important points to remember:
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Figure 11.62: Some examples where K-Means works well and some where it fails.

• Usually, we don’t split train / test set for clustering problems, because there are no labels to measure
how good a set of clusters are.

• Similarly, definitions like bias, variance, complexity bias-variance trade off might not work for unsu-
pervised learning problems.

• The heterogeneity objective in clustering does not have the same meaning as training error in supervised
learning tasks. There is no definition of accuracy for clustering either.



Chapter 12

More Clustering Methods
Slides (pdf) Video (Panopto)

Recall in the last chapter that we introduced the concept of a cluster, a centroid with a spread of a specific
shape and size. We also went over some limitations of the k-means algorithm. In this chapter we will look
at a more diverse set of clustering techniques that allow us to overcome some of the limitations of k-means.

12.1 Mixture Models

One example of a mode of clustering that can generalize better than the k-means algorithm is a mixture
model. Each cluster can have its own probability distribution. One example of a probability distribution for
clusters is Gaussian Mixtures. The best shape and size for each cluster is learned via a technique called
Expectation Maximization, though we will not go in depth into it. Since Guassian Mixtures allow for
different shapes and sizes of clusters, we can allow soft assignments to clusters. This means that every
datapoint has a probability associated with how much it belongs to a cluster.

Example(s)

A soft assignment may be useful for categorizing news articles. A news article could have a 54%
chance it is about world news, 45% chance it is about science, and 1% chance it is a conspiracy theory.

Therefore, this leaves us with two types of clustering.

12.1.1 Hard Clustering

Hard clustering is clustering that has no overlaps. An example of hard clustering is K-means, because
every datapoint belongs to at most one cluster. Hard clustering is a subset of soft clustering.

12.1.2 Soft Clustering

Soft clustering does allow for overlap, though clusters do not necessarily have to overlap. As Gaussian
Mixtures use probabilities to cluster data, clusters may overlap.

When using a Gaussian Distribution to model our clusters, each cluster is defined by a mean µ and a
covariance σ. Hence, clusters can be unique in shape and size.

12.2 Hierarchical Clustering

Hierarchical Clustering takes advantage data that might have a hierarchical structure.

Definition 12.1: Dendrogram

A dendrogram is a type of tree diagram that is used for a hierarchical ordering of things.

We can organize data into a hierarchical structure using one of the two approaches:
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Figure 12.63: Taking a look at how ”blue” each pixel of an image is, we have soft clusters resulting from a
Guassian distribution.

Figure 12.64: Gaussian mixture components represent unique clusters specified by mean and covariance.

Definition 12.2: Divisive

The divisive algorithm, a.k.a. top-down starts with all the data in one big cluster and then
recursively splits the data into smaller clusters.

Definition 12.3: Agglomerative

The agglomerative algorithm, a.k.a. bottom-up starts with each datapoint in its own cluster and
merges clusters until all points are in one big cluster.

12.2.1 Divisive Clustering

To structure our data into a dendrogram, we might adapt the k-means algorithm to do divisive clustering.
We could run the k-means algorithm on one big cluster, and then running it on each of those smaller clusters,
and keeping going until we have the desired number of sub-clusters. This is one option out of many divisive



[DRAFT: Content subject to change] 12.12 Introduction to Machine Learning (Non-Majors) 12-67

Figure 12.65: The distribution of each cluster gives it a unique shape.

clustering techniques as there are a number of choices we must consider:

• Algorithm: K-means? Or something else?

• Clusters per split: How many subclusters result from splitting one cluster?

• Stopping: When do we stop splitting? It could be when we reach a max cluster size, or a max
cluster radius, or a specified number of clusters.

12.2.2 Agglomerative Clustering

Agglomerative clustering can be summarized by the following algorithm:

1. Initialize each point in its own cluster.

2. Define a distance metric between clusters.

3. While there is more than one cluster present, merge the two closest clusters.

With agglomerative clustering, we have to make the choice of which distance metric to use. As an example,
we can use the single linkage metric, which determines the distance between two clusters as the distance
between the closest two points of those clusters:

distance(C1, C2) = minxi∈C1,xj∈C2
d(xi, xj) (12.27)

The above equation states that the distance between Cluster 1 and Cluster 2 is some xi in Cluster 1 and
some xj in Cluster 2 where those two points are the closest possible pair between the two clusters.
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Figure 12.66: In the above figure, we have a set of datapoints in the top left. We want to organize them into a
dendrogram (in blue) using agglomerative clustering, so we will group datapoints together in the dendrogram
(bottom right) as we merge clusters (top left). To start off, every cluster has one single datapoint. After
merging two of the closest clusters together, notice how one cluster (in red) now has two datapoints. A
branch on the dendrogram connecting these datapoints has been drawn to reflect this change.

Figure 12.67: Now that one of our clusters has more than one datapoint in it, we can utilize the single
linkage distance metric. If we want to measure the distance between the red cluster A and the cluster at the
bottom-right B, we have two points to compare. Clearly, the datapoint at the bottom of the red cluster A
is closer to cluster B.

Since the single linkage distance metric compares the two closest points between two clusters, we are able to
draw complex cluster shapes.

Now, to figure out which two clusters to merge, we have to compare the closest datapoint pairs between
every combination of clusters. Once we find the closest datapoint pairs between the two closest clusters, we
merge these clusters and repeat until there is only one cluster. As we keep merging until we get one cluster,
we complete our dendrogram. One thing to notice is that the higher the connecting line between two point
is in the dendrogram, the further away they are in the cluster.
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Figure 12.68: A doughnut and a crescent clustering achieved by the single-linkage distance metric in agglom-
erative clustering. Due to single linkage, before every clustering, we look at the two closest points between
the two closest clusters. Because of this, the ring that is the doughnut shape can be formed distinctly from
the doughnut’s center, as every time we add a point to the ring, it happens to lie on the circumference of
the ring and is closer to the ring than the center of the doughnut is to any of the ring points.

0 0

This distance measure is important because it allows us to mark specific heights within our dendrogram that
specify cluster separations, if we want to preserve some clusters.

Final Notes on Agglomerative Clustering

There are a number of choices we must make when considering the practical applications of agglomerative
clustering. Firstly, the single linkage distance metric isn’t the only metric there is. We could also use a
complete linkage or a centroid linkage.The complete linkage computes the distances of clusters via the
farthest points of each cluster away from each other, and the centroid linkage uses the center point of each
cluster. We also have to think about how to define our D∗, or where to cut the dendrogram, i.e. how
many clusters to preserve. In general, fewer clusters are more interpretable, but if we only have one cluster
then we might as well not have clustered anything at all. This is why we cut the dendrogram, so that we
can highlight key categories of the data. Finally, we cannot forget about outliers. We might set a distance
threshold to pick out outliers, or come up with a more complex algorithm all together. The key takeaway
from all of these choices we must make is that in the end there is no one correct answer, but rather what
yields the most practical and interpretable results given our data and purposes.

The runtime of the algorithm we described above is O(n2log(n)). In this class you do not need to fully
understand runtime analysis, but this runtime comes from the fact that this algorithm compares every single
point to every single other point, and sorts each of those comparisons. The triangle inequality, a theorem
that states that ”for any triangle, the sum of the lengths of any two sides must be greater than or equal to
the length of the remaining side”, allows us to bypass some of these comparisons, making the best known
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Figure 12.69: The final cluster, with the completed dendrogram.

Figure 12.70: The height of the branches that connect datapoints gives is proportional to the distance
between clusters. See distances of α, b, d.

optimal runtime for agglomerative clustering O(n2).

12.3 Missing Data

In all types of data analysis, the problem of missing data is extremely common. In this section we will
discuss our options in the face of missing data.
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Figure 12.71: If we want to preserve some clusters, we can ”cut” the dendrogram at a specific height D∗

depending on how many clusters we want. The above example would preserve 5 unique clusters.

12.3.1 Strategy 1: Skip

We can simply ignore missing data by discarding data with missing elements in it.
Pros:

• Very easy to understand.

• Can be applied to any model.

Cons:

• We could be removing useful information.

• We don’t know if we should remove one datapoint with a missing feature, or remove that feature from
the dataset entirely to keep the datapoint.

12.3.2 Strategy 2: Sentinel Values

Instead of cutting out missing data, we can replace it with a value that indicates it is missing.
Pros:

• Very easy to understand.

• Works well with categorical data, as ”missing” becomes its own category.

Cons:

• Does not work well with numeric features.

12.3.3 Strategy 3: Imputation

With imputation, we utilize some heuristic to ”predict’ what a missing value may be. A simple approach
for categorical data could be simply just using the most popular category as the value for the missing data,
and for numeric data it could be using the median or the mode. A more complex approach could be using
machine learning to estimate a prediction of what that missing value should be based on the relationship
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between other features in the data.

Pros:

• Simple to implement if using the simple approach.

• Can be applied to any model.

Cons:

• May result in systematic errors. Maybe there is a deeper-rooted issue for why the values are missing,
and we shouldn’t just fill them in as if nothing happened.

12.3.4 Strategy 4: Modify Algorithm

We can completely redesign the model so that it accounts for missing values. For example, we could recreate
a tree such that it has a special branch for missing values.

Pros:

• This is very similar to the sentinel value approach so it is likewise simple.

• It works for numeric features.

• It can yield more accurate predictions.

Cons:

• You have to implement an entirely new model. This could be pretty difficult for some model types.
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