Idea: Estimate probabilities $\hat{P}(y|x)$ and use those for prediction

Probability Classifier

Input x: Sentence from review

Estimate class probability $\hat{P}(y = +1|x)$

If $\hat{P}(y = +1|x) > 0.5$:
- $\hat{y} = +1$

Else:
- $\hat{y} = -1$

Notes:

Estimating the probability improves **interpretability**
Interpreting Score

\[\text{Score}(x_i) = w^T h(x_i) \]

\[-\infty \quad \hat{y}_i = -1 \quad 0 \quad \hat{y}_i = +1 \quad \infty \]

Very sure \(\hat{y}_i = -1 \)

Not sure if \(\hat{y}_i = -1 \) or \(\hat{y}_i = +1 \)

Very sure \(\hat{y}_i = +1 \)

\[\hat{P}(y_i = +1 | x_i) = 0 \quad \hat{P}(y_i = +1 | x_i) = 0.5 \quad \hat{P}(y_i = +1 | x_i) = 1 \]

\[\hat{P}(y = +1 | x) \]

\[0 \quad 1 \]
\[\hat{P}(y = +1|x, \hat{w}) = \text{sigmoid}(\hat{w}^T h(x)) = \frac{1}{1 + e^{-\hat{w}^T h(x)}} \]

Diagram:
- Training Data → Feature extraction → h(x) → ML model → ML algorithm → Quality metric
- \(x \) and \(y \) are inputs and outputs of the feature extraction and ML model, respectively.
- The ML model uses the trained weights \(\hat{w} \) to make predictions.
- The quality metric is used to evaluate the model's performance.
Naïve Bayes
Idea: Naïve Bayes

\[
x = \text{“The sushi & everything else was awesome!”}
\]

\[
P(y = +1 \mid x = \text{“The sushi & everything else was awesome!”})?
\]

\[
P(y = -1 \mid x = \text{“The sushi & everything else was awesome!”})?
\]

Idea: Select the class that is the most likely!

Bayes Rule:

\[
P(y = +1 \mid x) = \frac{P(x \mid y = +1)P(y = +1)}{P(x)}
\]

Example

\[
P(\text{“The sushi & everything else was awesome!”} \mid y = +1)P(y = +1)
\]

\[
P(\text{“The sushi & everything else was awesome!”})
\]

Since we’re just trying to find out which class has the greater probability, we can discard the divisor.
Naïve Assumption

Idea: Select the class with the highest probability!

Problem: We have not seen the sentence before.

Assumption: Words are independent from each other.

\[x = \text{"The sushi & everything else was awesome!"} \]

\[
P(\text{"The sushi & everything else was awesome!"}|y = +1) \cdot P(y = +1)
\]

\[
P(\text{"The sushi & everything else was awesome!"})
\]

\[
P(\text{"The sushi & everything else was awesome!"} | y = +1) = P(\text{The} | y = +1) \cdot P(\text{sushi} | y = +1) \cdot P(\& | y = +1) \cdot P(everything | y = +1) \cdot P(\text{else} | y = +1) \cdot P(\text{was} | y = +1) \cdot P(\text{awesome} | y = +1)
\]
How do we compute something like $P(y = +1)$?

How do we compute something like $P(\text{"awesome"} | y = +1)$?
If a feature is missing in a class everything becomes zero.

\[P(\text{“The sushi & everything else was awesome!”} | y = +1) \]
\[= P(\text{The} | y=+1) \times P(\text{sushi} | y = +1) \times P(\& | y = +1) \]
\[\times P(\text{everything} | y = +1) \times P(\text{else} | y = +1) \times P(\text{was} | y = +1) \]
\[\times P(\text{awesome} | y = +1) \]

\[P(\text{be} | y=+1) = \frac{1}{\text{large}} \]

Solutions?

- Take the log (product becomes a sum).
 - Generally define \(\log(0) = 0 \) in these contexts
- Laplacian Smoothing (adding a constant to avoid multiplying by zero)
Compare Models

Logistic Regression:

\[P(y = +1|x, w) = \frac{1}{1 + e^{-w^T h(x)}} \]

Naïve Bayes:

\[P(y|x_1, x_2, \ldots, xd) = \prod_{j=1}^{d} P(x_j|y) \cdot P(y) \]
Compare Models

Generative: defines a distribution for generating x (e.g. Naïve Bayes)

Discriminative: only cares about defining and optimizing a decision boundary (e.g. Logistic Regression)
Decision Trees
How do we make decisions?

Non-linear decision boundaries

A line might not always support our decisions.
What makes a loan risky?

I want to buy a new house!

Credit History ★★★★★
Income ★★★
Term ★★★★★★
Personal Info ★★★

Loan Application
Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair
What’s my income?

Example:
$80K per year
Loan terms

How soon do I need to pay the loan?

Example: 3 years, 5 years,...
Personal information

Age, reason for the loan, marital status,…

Example: Home loan for a married couple
Intelligent application
Classifier review

Input: x_i

Output: \hat{y}

Predicted class

$\hat{y}_i = +1$
Safe

$\hat{y}_i = -1$
Risky
Setup

Data (N observations, 3 features)

<table>
<thead>
<tr>
<th>Credit</th>
<th>Term</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>3 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
</tbody>
</table>

Evaluation: classification error

Many possible decisions: number of trees grows exponentially!
Decision Trees

- **Branch/Internal node**: splits into possible values of a feature
- **Leaf node**: final decision (the class value)
Growing Trees

• Grow the trees using a greedy approach
• What do we need?
Loan status: Safe Risky

Root

of Safe loans

of Risky loans

N = 9 examples
Decision stump: 1 level

Loan status: Safe Risky

Split on Credit

<table>
<thead>
<tr>
<th>Credit</th>
<th>Term</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>3 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
</tbody>
</table>

Subset of data with Credit = excellent
 Subset of data with Credit = fair
 Subset of data with Credit = poor
Making predictions

For each leaf node, set $\hat{y} =$ majority value

Loan status: Safe Risky

- Root
 - credit?
 - excellent
 - 2 > 0
 - Safe
 - fair
 - 3 > 1
 - Safe
 - poor
 - 1 < 2
 - Risky
How do we select the best feature?

* Select the split with lowest classification error

Choice 1: Split on Credit

- **Loan status:** Safe, Risky
- **Root: 6 3**
- **Credit?**
 - **excellent:** 2 0
 - **fair:** 3 1
 - **poor:** 1 2

Choice 2: Split on Term

- **Loan status:** Safe, Risky
- **Root: 6 3**
- **Term?**
 - 3 years
 - 5 years
Calculate the node values.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Term</th>
<th>Income</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>risky</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>excellent</td>
<td>3 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>poor</td>
<td>3 yrs</td>
<td>high</td>
<td>risky</td>
</tr>
<tr>
<td>poor</td>
<td>5 yrs</td>
<td>low</td>
<td>safe</td>
</tr>
<tr>
<td>fair</td>
<td>3 yrs</td>
<td>high</td>
<td>safe</td>
</tr>
</tbody>
</table>

Choice 2: Split on Term

Loan status:

Safe Risky

```
Root
6  3
```

Term?

3 years
5 years
How do we select the best feature?

Select the split with lowest classification error

Choice 1: Split on Credit

- Loan status: Safe Risky
- Root 6 3
- Credit?
 - excellent 2 0
 - fair 3 1
 - poor 1 2

Choice 2: Split on Term

- Loan status: Safe Risky
- Root 6 3
- Term?
 - 3 years 4 1
 - 5 years 2 2
How do we measure effectiveness of a split?

Loan status:
Safe Risky

Idea: Calculate classification error of this decision stump

Error at a node
= # mistakes in each child node
data points at the node

Root
6 3

Credit?

excellent
2 0

fair
3 1

poor
1 2
Calculating classification error

Step 1: \(\hat{y} = \text{class of majority of data in node} \)

Step 2: Calculate classification error of predicting \(\hat{y} \) for this data

\[
\text{Error} = \frac{3}{9} = 0.33
\]

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Loan status: Safe Risky

\(\hat{y} = \text{majority class} \)
Choice 1: Split on Credit history?

Does a split on Credit reduce classification error below 0.33?

Choice 1: Split on Credit

Loan status:
Safe Risky

Credit?

excellent 2 0
fair 3 1
poor 1 2
Split on Credit: Classification error

Choice 1: Split on Credit

Loan status:
Safe Risky

Root
6 3

Credit?

excellent
2 0
Safe
0 mistakes

fair
3 1
Safe
1 mistake

poor
1 2
Risky
1 mistake

Error = \frac{0 + 1 + 1}{9} = \frac{2}{9}
= 0.22

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.33</td>
</tr>
<tr>
<td>Split on credit</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Choice 2: Split on Term

Loan status: Safe Risky

Root
6 3

Term?

3 years
4 1
Safe

5 years
2 2
Risky
Evaluating the split on Term

Choice 2: Split on Term

Loan status: Safe Risky

Root: 6 3

Term?

3 years 4 1 → Safe 1 mistake

5 years 2 2 → Risky 2 mistakes

Error = \frac{1+2}{9} = \frac{3}{9} = 0.33

<table>
<thead>
<tr>
<th>Tree</th>
<th>Classification error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(root)</td>
<td>0.33</td>
</tr>
<tr>
<td>Split on credit</td>
<td>0.22</td>
</tr>
<tr>
<td>Split on term</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Choice 1 vs Choice 2: Comparing split on credit vs term

Choice 1: Split on Credit
- **Loan status:**
 - Safe
 - Risky
- **Root:**
 - Credit?
- **Split conditions:**
 - **excellent:** 2, 0
 - **poor:** 1, 2

Choice 2: Split on Term
- **Loan status:**
 - Safe
 - Risky
- **Root:**
 - Term?
- **Split conditions:**
 - 3 years: 4, 1
 - 5 years: 2, 2

Tree Classification error
- (root): 0.33
- split on credit: 0.22
- split on loan term: 0.33

Winner:
- **Choice 1:** Split on Credit
- **Choice 2:** Split on Term
Split(node)

- Given a subset of data M in node
- For each feature h_i:
 - Compute classification error for a split of M according to feature h_i:
 - Chose feature $h^*(x)$ with lowest classification error and expand the tree to include the children of current node after the split
Greedy & Recursive Algorithm

BuildTree(node)
- If the number of datapoints at the current node or the classification error is within a certain threshold:
 - Stop
- Else:
 - Split(node)
 - For child in node:
 - BuildTree(child)

- Decision Tree algorithm is **greedy**: It aims to optimize the classification error at each node. As a result, the final result won't be globally optimal, but it guarantees computational efficiency.
- Decision Tree algorithm is **recursive**: From the current node, if we decide to further expanding the tree, we will repeat the same operations in the child nodes.
Decision tree expansion: 1 level

Loan status: Safe Risky

Split on Credit

Credit?

Subset of data with Credit = excellent

Subset of data with Credit = fair

Subset of data with Credit = poor
Stopping

- Stop if all points are in one class

Loan status:
- Safe
- Risky

Root

<table>
<thead>
<tr>
<th></th>
<th>Safe</th>
<th>Risky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Values</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Nodes

- **excellent**
 - Safe: 2, Risky: 0

- **fair**
 - Safe: 3, Risky: 1

- **poor**
 - Safe: 2, Risky: 1

Leaf node

All data points are Safe

nothing else to do with this subset of data
Expanding the trees by recursing on children nodes

Loan status:
Safe Risky

Root
6 3

Credit?

excellent
2 0

Safe

Build a decision subtree with subset of data where Credit = fair

fair
3 1

Build a decision subtree with subset of data where Credit = poor

poor
2 1
Loan status:
Safe Risky

Credit?
excellent 2 0 → Safe
fair 3 1
poor 1 2

Term?
3 years 2 0 → Safe
5 years 1 1

Income?
high 0 2 → Risky
Low 1 0 → Safe

Build another subtree for these subset data points
Different data types that decision trees support

<table>
<thead>
<tr>
<th>Income (K)</th>
<th>Credit</th>
<th>Home ownership</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$105 K</td>
<td>excellent</td>
<td>Rent</td>
<td>Safe</td>
</tr>
<tr>
<td>$112 K</td>
<td>good</td>
<td>Own</td>
<td>Risky</td>
</tr>
<tr>
<td>$73 K</td>
<td>fair</td>
<td>Rent</td>
<td>Safe</td>
</tr>
<tr>
<td>$69 K</td>
<td>excellent</td>
<td>Mortgage</td>
<td>Safe</td>
</tr>
<tr>
<td>$217 K</td>
<td>excellent</td>
<td>Own</td>
<td>Risky</td>
</tr>
<tr>
<td>$120 K</td>
<td>good</td>
<td>Mortgage</td>
<td>Safe</td>
</tr>
<tr>
<td>$64 K</td>
<td>fair</td>
<td>Own</td>
<td>Risky</td>
</tr>
<tr>
<td>$340 K</td>
<td>excellent</td>
<td>Own</td>
<td>Safe</td>
</tr>
<tr>
<td>$60 K</td>
<td>good</td>
<td>Other</td>
<td>Risky</td>
</tr>
</tbody>
</table>
We have been used to numerical features (such as number of bedrooms / bathrooms, income, are).

However, in practice, data comes from different forms.
- There are three main data types:
 - **Numeric**
 - **Categorical**: data that takes on a number of fixed possible values
 - **Ordinal**: data that have ordered categories
 E.g.: credit quality (good / fair / bad)
 - **Nominal**: data that doesn’t have ordered categories
 E.g.: home ownership (rent / own / mortgage)
 - Reminder about the extra credit: Zip code is a categorically nominal variable
Transforming categorical features

Depending on implementations, decision trees might not need you to transform data of categorical types into numeric values. However, in models that use differentiable loss functions (like Linear Regression / Logistic Regression, some forms of decision trees), you need to transform categorical data:
- **Ordinal**: Transform into numbers of a certain order
 e.g: For 3 categories (bad / fair / good)
 - bad = 0, fair = 1, good = 2
- **Nominal**: Using one-hot encoding

<table>
<thead>
<tr>
<th>id</th>
<th>color</th>
<th>color_red</th>
<th>color_blue</th>
<th>color_green</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>blue</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>green</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>blue</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Threshold split for numeric features

Loan status:
Safe Risky

Root
22 18

Split on Income

Income?

< $60K
8 13

>= $60K
14 5

Subset of data with Income >= $60K
Best threshold?

Infinite possible values of t

Income < t*

Income = t*

Income >= t*

Income

$10K

$120K

Safe

Risky
Threshold between points

Same classification error for any threshold split between v_A and v_B.
Only need to consider mid-points

Finite number of splits to consider

Income

Safe

Risky

$10K

$120K
Splitting for numeric features

Step 1: Sort the values of a feature $h_j(x)$:

Let $\{v_1, v_2, v_3, \ldots, v_N\}$ denote sorted values

Step 2:

- For $i = 1 \ldots N-1$
 - Consider split $t_i = (v_i + v_{i+1}) / 2$
 - Compute classification error
- Chose the t^* with the lowest classification error
Earlier, we learn how to learn decision trees based on classification error. However, this metric is not sensitive enough if two different splits give the same classification error.

In practice, people prefer using continuous loss functions for splitting decision (two algorithms like ID3 – entropy loss or CART – Gini impurity loss).
Visualizing the threshold split

Threshold split is the line $\text{Age} = 38$
Split on Age
>= 38

Income

age < 38

age >= 38

Predict Safe

Predict Risky
Each split partitions the 2-D space

- **Age >= 38**
 - Income >= 60K
- **Age < 38**
 - Income < 60K

Axis-parallel rectangular decision boundaries
Depth 1:
Split on $x[1]$

- y values:
 - $x[1] < -0.07$
 - 13
 - 3
 - $x[1] \geq -0.07$
 - 4
 - 11
Depth 2

![Graphical representation of depth 2](image)

- **y values**
 - Root
 - x[1]
 - x[1] < -0.07
 - 13 3
 - x[1] >= -0.07
 - 4 11

- **x values**
 - x[1]:
 - x[1] < -1.66
 - 7 0
 - x[1] >= -1.66
 - 6 3
 - x[2]:
 - x[2] < 1.55
 - 1 11
 - x[2] >= 1.55
 - 3 0
Same feature can be used to split multiple times

For threshold splits, same feature can be used multiple times
Decision boundaries at different depths

Decision boundaries can be complex!

Depth 1

Depth 2

Depth 10

\(\text{train error} \approx 0 \)
Advantages of Decision Tree

Advantages:
- Easy to interpret
- Can handle both continuous and categorical variables without preprocessing
- No normalization required as it uses rule-based approach
- Can create non-linear decision boundaries
- Can handle missing values
Disadvantages:
- Deep decision trees are prone to overfitting.
 - Decision boundaries are interpretable but not stable, because adding new datapoints will cause the trees to be regenerated.
 - Not suitable for large datasets due to the growing complexity
- Only allows axis-parallel rectangular decision boundaries
Overfitting prevention

Overcoming Overfitting:
- Set minimum number of data points in a node to split
- Early stopping
 - Fixed length depth
 - Maximum number of nodes
 - Stop if error does not considerably decrease
- Pruning

Fine-tune hyperparameters using a validation set.

Tree Pruning Example

[Diagram showing an unpruned and pruned decision tree with labeled nodes and outcomes]
Recap

What you can do now:

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy & recursive algorithm
- Advantages and Disadvantages of a decision tree
- Understand different data types and necessary preprocessing steps
- Ways to overcome overfitting in decision trees