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Logistics Next two weeks:

Week 4: Other ML models for classification

Week 5: Fairness and societal impact of machine learning
- No pre-lecture videos
- There will still be checkpoints posted on EdStem

Homework 2 due this Friday

Tuesday of Week 6: Midterm exam (takehome) 
- Information on EdStem

Please try to ask questions on EdStem as much as you can. 
I’ll try my best to respond quickly
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Sentiment 
Classifier

In our example, we want to classify a restaurant review as 
positive or negative.
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Sentence from 
review

Classifier 
Model

Input: x Output: y
Predicted class



Implementation 2:
Linear Classifier

Idea: Use labelled training data to learn a weight for each word. 
Use weights to score a sentence. 

See last slide for example weights and scoring.

Linear Classifier 

Input 𝑥: Sentence from review

Compute S𝑐𝑜𝑟𝑒(𝑥)

If S𝑐𝑜𝑟𝑒 𝑥 > 0:
- *𝑦 = +1

Else: 
- *𝑦 = −1
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Decision 
Boundary

Consider if only two words had non-zero coefficients
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Word Coefficient Weight

𝑤! 0.0

awesome 𝑤" 1.0

awful 𝑤# -1.5

𝑠̂ = 1 ⋅ #𝑎𝑤𝑒𝑠𝑜𝑚𝑒 − 1.5 ⋅ #𝑎𝑤𝑓𝑢𝑙
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Learning !𝑤
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Can we use 
MSE for 
classification 
task?

One idea is to just model the processing of finding =𝑤 based on 
what we discussed in linear regression using MSE

=𝑤 = argmin
$

1
𝑛
E
%&"

'

𝕀 𝑦% ≠ *𝑦% #

Will this work? 

Assume ℎ" 𝑥 = #𝑎𝑤𝑒𝑠𝑜𝑚𝑒 so 𝑤" is its coefficient and 𝑤# is fixed.
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0
0

loss / error
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How to 
measure 
error for 
classification

The MSE loss function doesn’t work because of different reasons:

The outputs are discrete values with no ordinal nature, so we 
need a different way to frame how close a prediction is to a 
certain correct category

The MSE loss function for classification task is not continuous, 
differentiable or convex, so we can’t use optimization 
algorithm like Gradient Descent to find an optimal set of 
weights

Note: Convexity is an important concept in Machine Learning. By 
minimizing error, we want to find where that global minimum is, 
and that’s ideal in a convex function.

Let’s frame this problem in term of probabilities instead.
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Probabilities Assume that there is some randomness in the world, and instead 
will try to model the probability of a positive/negative label.

Examples:

“The sushi & everything else were awesome!”

Definite positive (+1)

𝑃 𝑦 = +1 │𝑥 = “𝑇ℎ𝑒 𝑠𝑢𝑠ℎ𝑖 & 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒 𝑤𝑒𝑟𝑒 𝑎𝑤𝑒𝑠𝑜𝑚𝑒! ” = 0.99

“The sushi was alright, the service was OK”

Not as sure

𝑃 𝑦 = −1│𝑥 = “𝑇ℎ𝑒 𝑠𝑢𝑠ℎ𝑖 𝑎𝑙𝑟𝑖𝑔ℎ𝑡, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑤𝑎𝑠 𝑜𝑘𝑎𝑦! ” = 0.5

Use probability as the measurement of certainty
𝑃(𝑦|𝑥)

9



Probability 
Classifier

Idea: Estimate probabilities K𝑃 𝑦 𝑥 and use those for prediction

Probability Classifier 

Input 𝑥: Sentence from review

Estimate class probability K𝑃(𝑦 = +1|𝑥)

If K𝑃 𝑦 = +1 𝑥 > 0.5:
- *𝑦 = +1

Else: 
- *𝑦 = −1

Notes: 

Estimating the probability improves interpretability

10



Score 
Probabilities?

Idea: Let’s try to relate the value of 𝑆𝑐𝑜𝑟𝑒(𝑥) to K𝑃(𝑦 = +1|𝑥)
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What if 𝑆𝑐𝑜𝑟𝑒 𝑥 is positive?

What if 𝑆𝑐𝑜𝑟𝑒 𝑥 is negative?

What if 𝑆𝑐𝑜𝑟𝑒 𝑥 is 0?



Interpreting 
Score
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𝑆𝑐𝑜𝑟𝑒 𝑥% = 𝑤(ℎ 𝑥%

−∞ ∞0*𝑦% = −1 *𝑦% = +1

Very sure
*𝑦% = −1

Not sure if
*𝑦% = −1 𝑜𝑟 *𝑦% = +1

Very sure
*𝑦% = +1

K𝑃 𝑦% = +1|𝑥% = 0 K𝑃 𝑦% = +1|𝑥% = 0.5 K𝑃 𝑦% = +1|𝑥% = 1

K𝑃(𝑦 = +1 |𝑥)0 1



Logistic 
Function

Use a function that takes numbers arbitrarily large/small and 
maps them between 0 and 1.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑆𝑐𝑜𝑟𝑒(𝑥) =
1

1 + 𝑒)*+,-.(0)
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𝑆𝑐𝑜𝑟𝑒(𝑥) 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑐𝑜𝑟𝑒 𝑥 )

−∞

−2

0

2

∞



Logistic 
Regression 
Model

𝑃 𝑦% = +1 𝑥% , 𝑤 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑆𝑐𝑜𝑟𝑒 𝑥% =
1

1 + 𝑒)$!2(0")

Logistic Regression Classifier 

Input 𝑥: Sentence from review

Estimate class probability K𝑃 𝑦 = +1 𝑥, =𝑤 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(=𝑤(ℎ 𝑥% )

If K𝑃 𝑦 = +1 𝑥, =𝑤 > 0.5:
- *𝑦 = +1

Else: 
- *𝑦 = −1
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Training
Data

Feature
extraction

ML 
model

Quality
metric

Optimization 
Algorithm

𝒚

𝒉(𝒙)

&𝒘

𝒙

(𝑷 𝒚 = +𝟏 𝒙, &𝒘 = 𝒔𝒊𝒈𝒎𝒐𝒊𝒅 &𝒘𝑻𝒉 𝒙 =
𝟏

𝟏 + 𝒆"#𝒘𝑻𝒉(𝒙)



Class 
Session
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Quality Metric 
= Likelihood

Want to compute the probability of seeing our dataset for every 
possible setting for 𝑤.  Find  𝑤 that makes data most likely! 
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Data Point ℎ"(𝑥) ℎ#(𝑥) 𝑦 Choose 𝑤 to maximize

𝑥("), 𝑦(") 2 1 +1 𝑃 𝑦(") = +1 𝑥("), 𝑤)

𝑥(#), 𝑦(#) 0 2 −1 𝑃 𝑦(#) = −1 𝑥(#), 𝑤)

𝑥(3), 𝑦(3) 3 3 −1 𝑃 𝑦(3) = −1 𝑥(3), 𝑤)

𝑥(4), 𝑦(4) 4 1 +1 𝑃 𝑦(4) = +1 𝑥(4), 𝑤)



Learn !𝑤 Now that we have our new model, we will talk about how to 
choose =𝑤 to be the “best fit”. 

The choice of 𝑤 affects how likely seeing our dataset is
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ℓ 𝑤 = V
%

'

𝑃(𝑦(%)|𝑥(%), 𝑤)

𝑃 𝑦(%) = +1 𝑥(%), 𝑤 =
1

1 + 𝑒)$!2(0("))

𝑃 𝑦(%) = −1 𝑥(%), 𝑤 =
𝑒)$!2(0("))

1 + 𝑒)$!2(0("))



Maximum 
Likelihood 
Estimate 
(MLE)

Find the 𝑤 that maximizes the likelihood

=𝑤 = argmax
$

ℓ 𝑤 = argmax
$

1
𝑛
V
%&"

'

𝑃(𝑦(%)|𝑥(%), 𝑤)

= argmax
$

1
𝑛
E
%&"

'

log(𝑃 𝑦(%) 𝑥(%), 𝑤))

(taking the log to turn product into sum of logs)

= argmin
$

1
𝑛
E
%&"

'

−log(𝑃 𝑦(%) 𝑥(%), 𝑤))

(Negative Log-Likelihood Loss)
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Optional: 
Further 
expansion of 
the logistic 
regression loss

Two ways to represent the loss: Using the linear score function:
𝑓 𝑥 % = 𝑤(ℎ(𝑥 % )

When the labels 𝑦 % ∈ −1, 1

=𝑤 = argmax
$

1
𝑛

E
!"#:%(")"%#

&

ln
1

1 + 𝑒'((*("))
+ E

!"#:%(")"'#

&

ln
𝑒'((*

("))

1 + 𝑒'((*("))

= argmin
1
𝑛

5

E
%&":7(")&8"

'

ln 1 + 𝑒)9(0(")) + E
%&":7(")&)"

'

−ln
1

1 + 𝑒9(0("))

= argmin
5

1
𝑛

E
%&":7(")&8"

'

ln 1 + 𝑒)(")9(0(")) + E
%&":7(")&)"

'

ln 1 + 𝑒)()")9(0(")

= argmin
$

1
𝑛
E
%&"

'

log 1 + 𝑒)7(")9(0)(")

When the labels 𝑦 % ∈ {0, 1} (cross-entropy loss) (more commonly used)

= argmin
$

−
1
𝑛
E
%&"

'

𝑦 % log 𝜎 𝑓 𝑥 % + 1 − 𝑦 % log 1 − 𝜎 𝑓 𝑥 %
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Likelihood vs 
Error

In understanding how to measure error for the classification 
problem, we want to understand how close a prediction is to 
the correct class, which means we want to assign a high 
probability for a correct prediction, and low probability for an 
incorrect prediction

Likelihood and error are the inverse of each other:

Maximizing likelihood = Minimizing Error

Likelihood function of the Logistic Regression problem

V
%&"

'

𝑃(𝑦(%)|𝑥(%), 𝑤)

Negative log-likelihood loss function of the Logistic 
Regression problem:

𝐿 𝑤 =E
%&"

'

−log(𝑃 𝑦(%) 𝑥(%), 𝑤))
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pollev.com/cs416

ThinkThinkThink
Which setting of 𝒘 should we use?
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1 min

#awful

#awesome

L 𝑤 " = 5
L 𝑤 # = 6

L 𝑤 3 = 4



What about 
multi-class 
classification
?

We just talked about using sigmoid to turn the score of an 
input into a probability, then use Negative Log-Likelihood to 
measure the loss of binary classification.

For multi-class classification (at least 3 classes), we will use 
softmax instead of sigmoid. (the details won’t be covered in 
this class). We’ll still use Negative Log-Likelihood as well. 
This combination is called cross-entropy loss (we’ll revisit 
this in the Deep Learning week).
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Brain BreakBrain BreakBrain Break
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25

Training
Data

Feature
extraction

ML 
model

Quality
metric

Optimization 
Algorithm

𝒚

𝒉(𝒙)

&𝒘

𝒙



Finding 
optimal 
weights

- Linear Regression has a closed form solution

- However, Logistic Regression does not. We have to use an 
iterative method like gradient descent! 

=𝑤 = argmin
$

E
%&"

'

−log(𝑃 𝑦(%) 𝑥(%), 𝑤))
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Gradient 
Descent

Gradient Descent algorithm

This is just describing going down the hill step by step.

𝛼 controls how big of steps we take, and picking it is crucial for 
how well the model you learn does!
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Start at some (random) weights 𝑤
While we haven’t converged:

𝑤 −= 𝛼𝛻𝐿(𝑤)

- 𝛼: learning rate
- 𝛻𝐿(𝑤): the gradients of loss function 𝐿 on a set of weights 𝑤



pollev.com/cs416

ThinkThinkThink
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1 min

Note that 𝛼 is a hyperparameter, and selecting the right value can 
lead to different results. What is the effect of very small and very 
large value of learning rate 𝛼 during training?



Effects of 
different 
values of 
learning 
rates
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Effects of 
different 
values of 
learning 
rates

Too large learning rate: the gradient might overshoot from the 
minimum and you will end up increasing the loss

Too small learning rate: take a long time for the loss to 
converge

Unfortunately, you have to do a lot of trial and error L

Try several values (generally exponentially spaced)

Find one that is too small and one that is too large to narrow 
search range. Try values in between! 
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Hyperparameter 
fine-tuning

We have introduced yet another hyperparameter that you have to 
choose, that will affect which predictor is ultimately learned.

If you want to tune both a Ridge penalty and a learning rate (step 
size for gradient descent), you will need to try all pairs of settings!

For example, suppose you wanted to try using a validation set 
to select the right settings out of:

- 𝜆 ∈ 0.01, 0.1, 1, 10, 100

- ∈ 0.001, 0.01, 0.1, 1, "
:
, "!
:

You will need to train 30 different models and evaluate each 
one! This is called Grid Search.

To decrease the number of combinations we have to choose, 
we can also use Random Search. 
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Some 
advanced 
issues with 
gradient 
descent

Advanced: Divergence with large step sizes tends to happen at 
the end, close to the optimal point. You can use a decreasing step 
size to avoid this 

𝛼: =
𝛼!
𝑡

(t: number of iterations)

Advanced: For each iteration of gradient descent, we have to 
calculate the loss from each datapoint in order to calculate the 
gradient of an update. If you have a lot of training datapoints, let’s 
say a million, calculating the gradient will be very computational 
expensive.

Instead, for each iteration, we can select a small number of 
random datapoints from the train set to calculate the gradients 
(instead of using the full train set) to decrease the computational 
time. This is called Stochastic Gradient Descent.
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Brain BreakBrain BreakBrain Break
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Overfitting -
Classification

34



More Features Like with regression, we can learn more complicated models by 
including more features or by including more complex features.

Instead of just using 

ℎ" 𝑥 = #𝑎𝑤𝑒𝑠𝑜𝑚𝑒

ℎ# 𝑥 = #𝑎𝑤𝑓𝑢𝑙

We could use 

ℎ" 𝑥 = #𝑎𝑤𝑒𝑠𝑜𝑚𝑒

ℎ# 𝑥 = #𝑎𝑤𝑓𝑢𝑙

ℎ3 𝑥 = #𝑎𝑤𝑒𝑠𝑜𝑚𝑒#

ℎ4 𝑥 = #𝑎𝑤𝑓𝑢𝑙#

…
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Decision 
Boundary

𝑤(ℎ 𝑥 = 0.23 + 1.12𝑥 1 − 1.07𝑥[2]
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Decision 
Boundary

𝑤(ℎ 𝑥 = 1.68 + 1.39𝑥 1 − 0.59𝑥 2 − 0.17𝑥 1 # − 0.96𝑥 2 #
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Decision 
Boundary

𝑤(ℎ 𝑥 = ⋯
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Decision 
Boundary

𝑤(ℎ 𝑥 = ⋯
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Overfitting Just like with regression, we see a similar pattern with complexity
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Low Complexity High Complexity

Classification 
Error True 

Error

Train 
Error



Effects of 
Overfitting

Remember, we say the logistic function become “sharper” with 
larger coefficients. 

What does this mean for our predictions?

Because the 𝑆𝑐𝑜𝑟𝑒(𝑥) is getting larger in magnitude, the 
probabilities are closer to 0 or 1! 41
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Plotting 
Probabilities

42

𝑃 𝑦 = +1 𝑥 =
1

1 + 𝑒);$!2(0)



Regularization
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L2 Regularized 
Logistic 
Regression

Just like in regression, can change our quality metric to avoid 
overfitting when training a model

=𝑤 = argmin
$

𝐿 𝑤 + 𝜆 𝑤
#
#
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Some Details Why do we subtract the L2 Norm?

=𝑤 = argmin
$

𝐿 𝑤 + 𝜆 𝑤 #
#

How does 𝝀 impact the complexity of the model?

How do we pick 𝝀?
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Coefficient Path: 
L2 Penalty 
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Coefficient =𝑤<

𝜆



Other 
Penalties?

Could you use the L1 penalty instead? Absolutely! 

=𝑤 = argmin
$

𝐿 𝑤 + 𝜆 𝑤
"

This is L1 regularized logistic regression

It has the same properties as the LASSO

Increasing 𝜆 decreases =𝑤 "

The LASSO favors sparse solutions
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Recap Theme: Details of logistic classification and how to train it

Ideas:

Minimizing error vs maximizing likelihood

Predict with probabilities

Using the logistic function to turn Score to probability

Logistic Regression

Gradient Descent

Effects of learning rate

Overfitting with logistic regression
- Over-confident
- Regularization
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