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Logistics Check EdStem for any announcements or clarifications on 
logistics

Jupyter Notebooks on EdStem.

Section tomorrow will give you practice on Python and 
Pandas

HW1 released on Friday

There will be activities to allow you to find pairs
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Linear 
Regression 
Model

Assume the data is produced by a line.
𝑦(") = 𝑤$+𝑤%𝑋(")

𝑤$, 𝑤% are the parameters of our model that need to be learned

𝑤$ is the intercept ($ of the land with no house)

𝑤% is the slope ($ increase per increase in sq. ft)

Learn estimates of these 
parameters '𝑤$, '𝑤% and use 
them to predict new value
for any input scalar 𝑥! 

)𝑦 = '𝑤$ + '𝑤%𝑥
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ML Pipeline
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Linear 
Regression 
Recap

Dataset

𝑋 ! , 𝑦 !
!"#
$

where 𝑋 ! ∈ ℝ%, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑋 ! : ℝ% → ℝ&

ℎ 𝑋 ! = ℎ' 𝑋 ! , ℎ# 𝑋 ! , … , ℎ&(𝑋 ! )

Regression Model
𝑦(!) = 𝑓 𝑋 !

= .
*"'

&
𝑤*ℎ* 𝑋 !

= 𝑤+ℎ 𝑋 !

Quality Metric / Loss function

𝑀𝑆𝐸 =
1
𝑛.
!"#

$

(𝑦 ! − 6𝑦(!)),

Predictor
7𝑤 = argmin

-
𝑀𝑆𝐸(𝑤)

Optimization Algorithm

Optimized using Gradient Descent

Prediction
6𝑦(!) = 7𝑤+ℎ(𝑋 ! )
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pollev.com/cs416

ThinkThink
Sort the following lines by their MSE on the data, from 
smallest to largest. (estimate, don’t actually compute)
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Pre-Lecture 
Video 1

Feature Extraction

7



8

Training
Data

Feature
extraction

ML 
model

Quality
metric

Optimization 
Algorithm

y

x ŷ

⌃f



Linear 
Regression 
Recap

Dataset

𝑋 ! , 𝑦 !
!"#
$

where 𝑋 ! ∈ ℝ%, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑋 ! : ℝ% → ℝ&

ℎ 𝑋 ! = ℎ' 𝑋 ! , ℎ# 𝑋 ! , … , ℎ&(𝑋 ! )

Regression Model
𝑦(!) = 𝑓 𝑋 !

= .
*"'

&
𝑤*ℎ* 𝑋 !

= 𝑤+ℎ 𝑋 !

Quality Metric / Loss function

𝑀𝑆𝐸 =
1
𝑛.
!"#

$

(𝑦 ! − 6𝑦(!)),

Predictor
7𝑤 = argmin

-
𝑀𝑆𝐸(𝑤)

Optimization Algorithm

Optimized using Gradient Descent

Prediction
6𝑦(!) = 7𝑤+ℎ(𝑋 ! )
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Higher Order 
Features

This data doesn’t look exactly linear, why are we fitting a line 
instead of some higher-degree polynomial?

We can! We just have to use a slightly different model! 

𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + 𝑤'𝑥'
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Polynomial 
Regression

Model
𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + … + 𝑤(𝑥(

To capture a non-linear relationship in the model, we can 
transform the original features into more features! 

How do you train it? Gradient descent (with more parameters) 11

Feature Value Parameter

0 1 (constant) 𝑤$

1 𝑥 𝑤%

2 𝑥& 𝑤&

… … …

d 𝑥( 𝑤(



Polynomial 
Regression

How to decide what the right degree? Come back Wednesday!
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Features

Features are the values we select or compute from the data 
inputs to put into our model. Feature extraction is the process of 
reduce the number of features in a dataset by creating new 
features from the existing ones (and then discarding the original 
features).

Model
𝑦 = 𝑤$ℎ$ 𝑥 + 𝑤%ℎ% 𝑥 + … + 𝑤)ℎ) 𝑥

= 0
*+$

)

𝑤*ℎ* 𝑥

13

Feature Value Parameter
0 ℎ$ 𝑥 often 1

(constant)
𝑤$

1 ℎ% 𝑥 𝑤%

2 ℎ&(𝑥) 𝑤&

… … …

d ℎ((𝑥) 𝑤,



Adding 
Other 
Features

Generally we are given a data table of values we might look at 
that include more than one feature per house.

Each row is a data point.

Each column (except Value) represents a feature

The last column (Price) contains the actual output values
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sq. ft. # bathrooms owner’s age … price

1400 3 47 … 70,800

700 3 19 … 65,000

… … … … …

1250 2 36 … 100,000



More Inputs -
Visually

Adding more features to the model allows for more complex 
relationships to be learned

𝑦 = 𝑤$ + 𝑤% 𝑠𝑞. 𝑓𝑡. + 𝑤& # 𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚𝑠

Coefficients tell us the rate of change if all other features are 
constant
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Pre-Lecture 
Video 2
Assessing Performance
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Polynomial 
Regression

How do we decide what the right choice of 𝑝 is?
17



Polynomial 
Regression

Consider using different degree polynomials on the same training set.

From estimating with your eyes, which one seems to have the lowest 
MSE on this dataset? 

It seems like minimizing the MSE on the training set is not the whole 
story here …
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𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 20



Why a (near) 
zero training 
error is not a 
good thing?

Why do we train ML models? 

We generally want them to do well on unseen data.

If we choose the model that minimizes MSE on the data it learned 
from, we are just choosing the model that can memorize, not the 
one that generalizes well. 

Analogy: Just because you can get 100% on a practice exam 
you’ve studied for hours, it doesn’t mean you will also get 
100% on the real test that you haven’t seen before. When 
you overprepares for an exam through rote memorization, 
you are not able to generalize your knowledge and transfer 
what you have learned to solve new, unfamiliar problems.

Key Idea: Assessing yourself based on something you learned 
from generally overestimates how well you will do in the future! 
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Performance
on unseen 
data

What we care about is how well the model will do on unseen data.

How do we measure this? True error

To do this, we need to understand uncertainty in the world

True Error
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Sq. Ft. Price | Sq. Ft.



Model 
Assessment

How can we figure out how well a model will do on future data if 
we don’t have any future data?

Estimate it! We can hide data from the model to test it later as 
an estimate how it will do on future data

We will randomly split our dataset into a train set and a test set

The train set is to train the model

The test set is to estimate the performance in the future
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Test Error What we really care about is the true error, or how well a model 
perform on unseen data in the wild, but we can’t know that 
without having an infinite amount of data! 

We will use the test set to estimate the true error. 

Note: The train and test set need to be randomly split in order for 
the test set to be truly reflective of data in the real world.

Call the error on the test set the test error for a model B𝑓:

𝑀𝑆𝐸-./- =
1
𝑛
0

"∈1./-

𝑦(") − B𝑓 𝑥(")
&

If the test set is large enough, this can approximate the true error.
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Train/Test Split If we use the test set to estimate future, how big should it be?

This comes at a cost of reducing the size of the training set 
though (in the absence of being able to just get more data)

In practice people generally do train:test as either

80:20

90:10

Important: Never train your model on data in the test set!
23



Model 
Complexity
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Model 
Complexity

There is not a well-defined way to measure the complexity of 
a model. It depends on the nature of the models.

We usually associate it with the number of parameters. A 
model with more parameters is usually more complex.

Example with polynomial regression:
- Model 1: 𝑦 = 𝑤$ + 𝑤%𝑥 (2 parameters)
- Model 2: 𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + 𝑤'𝑥' (4 parameters)

We say that model 2 is more complex than model 1.
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Training 
Error

What happens to training error as we increase model complexity?

Start with the simplest model (a constant  function)

End with a very high degree polynomial
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True Error What happens to true error as we increase model complexity?

Start with the simplest model (a constant  function)

End with a very high degree polynomial
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Train/True 
Error

Compare what happens to train and true error as a function of 
model complexity

28

Error

Complexity

Train error

True error



Underfitting
Underfitting happens when a model cannot capture the complex 
patterns between a training set’s features and its output values.

Underfitting is usually easy to fix because we can get a low training 
error by:

- Removing uninformative features

- Using more complex models (by adding more features or 
introducing more non-linearities to capture non-linear patterns)
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Overfitting Overfitting happens when we too closely match the training data 
and fail to generalize. 

Overfitting occurs when you train a predictor '𝑤 but there exists 
another predictor 𝑤′ from the same model class such that:

𝑒𝑟𝑟𝑜𝑟-23. 𝑤4 < 𝑒𝑟𝑟𝑜𝑟-23.('𝑤)

𝑒𝑟𝑟𝑜𝑟-25"6 𝑤4 > 𝑒𝑟𝑟𝑜𝑟-25"6('𝑤)

30
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Underfitting / 
Overfitting 

The ability to overfit/underfit is a knob we can turn based on the 
model complexity. 

More complex => easier to overfit

Less complex => easier to underfit

In a bit, we will talk about how to chose the “just right”, but now 
we want to look at this phenomena of overfitting/underfitting 
from another perspective.

31Underfitting Optimal Overfitting



Bias-Variance 
Tradeoff

32



Source of 
errors
in a model

Total errors for a machine learning model comes from 3 types:

Bias

Variance

Irreducible Errors

Irreducible error is the one that we can’t avoid or possibly 
eliminate. They are caused by elements outside of our control, 
such as noise from observations.
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Bias A model that is too simple fails to capture the complex patterns in 
the dataset, which signifies a fundamental limitation of the model. 
We call this a bias error.

Bias is the difference between the average prediction of our 
model and the expected value which we are trying to predict.

Low complexity (simple) models tend to have high bias.
34



Variance A model that is too complicated for the task overly fits to small 
fluctuations. The flexibility of the complicated model makes it capable 
of memorizing answers rather than learning general patterns. This 
contributes to the error as variance.

Variance is the variability in the model prediction, meaning how much 
the predictions will change if a different training dataset is used.

High complexity models tend to have high variance.*
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Bias-Variance 
Tradeoff

Irreducible error remains unchanged.

Tradeoff between bias and variance:

Simple models: High bias + Low variance

Complex models: Low bias + High variance

Source of errors for a particular model B𝑓 using MSE loss function:

Error = Biased squared + Variance + Irreducible Error 
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Brain BreakBrain Break
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Bias-Variance 
Tradeoff

Visually, this looks like the following! 
𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠& + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑖𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

38
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Bias –
Variance 
Tradeoff

39
Complexity

Error

Biased squared

Variance

Total error

Underfitting

Optimal model 
complexity

Overfitting



Dataset Size So far our entire discussion of error assumes a fixed amount of 
data. What happens to our error as we get more data?

40
Size of train set

Error



Dataset Size Model complexity doesn’t depend on the size of the training set

The larger the training set, the lower the variance of the model, 
thus less overfitting 

41
Size of train set

Error

Train error

True error



Choosing 
Complexity
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Choosing 
Complexity

So far we have talked about the affect of using different 
complexities on our error. Now, how do we choose the right one?
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pollev.com/cs416

ThinkThink
Goal: Get you actively participating in your learning

Typical Activity
- Question is posed
- Think (1 min): Think about the question on your own
- Pair (2 min): Talk with your neighbor to discuss question

- If you arrive at different conclusions, discuss your 
logic and figure out why you differ!

- If you arrived at the same conclusion, discuss why 
the other answers might be wrong!

- Share (1 min): We discuss the conclusions as a class

During each of the Think and Pair stages, you will respond to 
the question via a Poll Everywhere poll

- The poll will only be open for the last 15 seconds of 
each of the stage

- Not worth any points, just here to help you learn! 

44
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pollev.com/cs416

ThinkThink
Suppose I wanted to figure out the right degree polynomial for 
my dataset (we’ll try p from 1 to 20). What procedure should I 
use to do this? Pick the best option

For each possible degree polynomial p:

Train a model with degree p on the training set, pick p that 
has the lowest test error

Train a model with degree p on the training set, pick p that 
has the highest test error

Train a model with degree p on the test set, pick p that has 
the lowest test error

Train a model with degree p on the test set, pick p that has 
the highest test error

None of the above

45
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pollev.com/cs416

ThinkThink
Suppose I wanted to figure out the right degree polynomial for 
my dataset (we’ll try p from 1 to 20). What procedure should I 
use to do this? Pick the best option

For each possible degree polynomial p:

Train a model with degree p on the training set, pick p that 
has the lowest test error

Train a model with degree p on the training set, pick p that 
has the highest test error

Train a model with degree p on the test set, pick p that has 
the lowest test error

Train a model with degree p on the test set, pick p that has 
the highest test error

None of the above

46

2 min



Choosing 
Complexity

We can’t just choose the model that has the lowest train error because 
that will favor models that overfit! 

It then seems like our only other choice is to choose the model that has 
the lowest test error (since that is our approximation of the true error)

This is almost right. However, the test set has been tampered, thus 
is no longer is an unbiased estimate of the true error. 

We didn’t technically train the model on the test set (that’s good), 
but we chose which model to use based on the performance of the 
test set. 

- It’s no longer a stand in for “the unknown” since we probed it 
many times to figure out which model would be best.

NEVER EVER EVER touch the test set until the end. You only use it ONCE 
to evaluate the performance of the best model you have selected during 
training.
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Choosing 
Complexity

We will talk about two ways to pick the model complexity 
without ruining our test set. 

Using a validation set

Doing cross validation
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Validation Set So far we have divided our dataset into train and test

We can’t use Test to choose our model complexity, so instead, 
break up Train into ANOTHER dataset

We will pick the model that does best on validation. Note that 
this now makes the validation error of the “best” model a biased 
estimate of true error. The test error will be an unbiased estimate 
though since we never looked at it!

49
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Validation Set The process generally goes

train, validation, test = random_split(dataset)

for each model complexity p:

model = train_model(model_p, train)

val_err = error(model, validation)

keep track of p with smallest val_err

return best p + error(model, test)
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Validation Set Pros

Easy to describe and implement 

Pretty fast 

- Only requires training a model and predicting on the 
validation set for each complexity of interest

Cons

- Have to sacrifice even more training data

- Prone to overfitting
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Cross 
Validation

In the pre-lecture videos for next week, we will introduce another 
way to perform validation called cross-validation. 

We leave the slides here for reference, but we will cover this in 
Monday’s class.
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Cross-Validation Clever idea: Use many small validation sets without losing too 
much training data.

Still need to break off our test set like before. After doing so, 
break the training set into 𝑘 chunks.

For a given model complexity, train it 𝑘 times. Each time use all 
but one chunk and use that left out chunk to determine the 
validation error. 
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Train Test

Chunk1 Chunk2 Chunk3 Chunk4 Test



Cross 
Validation

54

Validation Training

Error 1

Error 2

Error 3

Error k

Average
all errors

For a set of hyperparameters, perform Cross Validation on k folds

.

.

.  .  . 

.  .  . 

.  .  . 

.  .  . 

k folds



Cross-Validation The process generally goes

chunk_1, …, chunk_k, test = split_data(dataset)

for each model complexity p:

for i in [1, k]:

model = train_model(model_p, chunks - i)

val_err = error(model, chunk_i)

avg_val_err = average val_err over chunks

keep track of p with smallest avg_val_err

return model trained on train with best p + 
error(model, test)
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Cross-Validation Pros

- Prevent overfitting: By training the model on multiple folds instead of 
only 1 training set, this allow the model with the best generalization 
capabilities.

- Don’t have to actually get rid of any training data!

- Help find the optimal model (such as the best set of hyperparameters, 
the best complexity) 

Cons

- Very slow. For each model selection, we have to train 𝑘 times

- Very computationally expensive 
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Cross-Validation For best results, need to make 𝑘 really big

Theoretical best estimator is to use 𝑘 = 𝑛
- Called "Leave One Out Cross Validation”

In practice, people use 𝑘 = 5 to 10

Nowadays, with the rise of deep learning, people don’t use cross-
validation much. Datasets of large models contain millions of training 
examples, which make them robust and overcome overfitting.
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Recap Theme: Assess the performance of our models

Ideas:

Model complexity

Train vs. Test vs. True error

Overfitting and Underfitting

Bias-Variance Tradeoff

Error as a function of train set size

Choosing best model complexity
- Validation set
- Cross Validation
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