
CSE/STAT 416
Assessing Performance

Pemi Nguyen
University of Washington
March 30, 2022

Slides by Hunter Schafer

Logistics Check EdStem for any announcements or clarifications on
logistics

Jupyter Notebooks on EdStem.

Section tomorrow will give you practice on Python and
Pandas

HW1 released on Friday

There will be activities to allow you to find pairs

2

Linear
Regression
Model

Assume the data is produced by a line.
𝑦(") = 𝑤$+𝑤%𝑋(")

𝑤$, 𝑤% are the parameters of our model that need to be learned

𝑤$ is the intercept ($ of the land with no house)

𝑤% is the slope ($ increase per increase in sq. ft)

Learn estimates of these
parameters '𝑤$, '𝑤% and use
them to predict new value
for any input scalar 𝑥!

)𝑦 = '𝑤$ + '𝑤%𝑥

3

ML Pipeline

4

Training
Data

Feature
extraction

ML
model

Quality
metric

Optimization
Algorithm

y

x ŷ

⌃f

Linear
Regression
Recap

Dataset

𝑋 ! , 𝑦 !
!"#
$

where 𝑋 ! ∈ ℝ%, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑋 ! : ℝ% → ℝ&

ℎ 𝑋 ! = ℎ' 𝑋 ! , ℎ# 𝑋 ! , … , ℎ&(𝑋 !)

Regression Model
𝑦(!) = 𝑓 𝑋 !

= .
*"'

&
𝑤*ℎ* 𝑋 !

= 𝑤+ℎ 𝑋 !

Quality Metric / Loss function

𝑀𝑆𝐸 =
1
𝑛.
!"#

$

(𝑦 ! − 6𝑦(!)),

Predictor
7𝑤 = argmin

-
𝑀𝑆𝐸(𝑤)

Optimization Algorithm

Optimized using Gradient Descent

Prediction
6𝑦(!) = 7𝑤+ℎ(𝑋 !)

5

pollev.com/cs416

ThinkThink
Sort the following lines by their MSE on the data, from
smallest to largest. (estimate, don’t actually compute)

6

1 min

Pre-Lecture
Video 1

Feature Extraction

7

8

Training
Data

Feature
extraction

ML
model

Quality
metric

Optimization
Algorithm

y

x ŷ

⌃f

Linear
Regression
Recap

Dataset

𝑋 ! , 𝑦 !
!"#
$

where 𝑋 ! ∈ ℝ%, 𝑦 ∈ ℝ

Feature Extraction
ℎ 𝑋 ! : ℝ% → ℝ&

ℎ 𝑋 ! = ℎ' 𝑋 ! , ℎ# 𝑋 ! , … , ℎ&(𝑋 !)

Regression Model
𝑦(!) = 𝑓 𝑋 !

= .
*"'

&
𝑤*ℎ* 𝑋 !

= 𝑤+ℎ 𝑋 !

Quality Metric / Loss function

𝑀𝑆𝐸 =
1
𝑛.
!"#

$

(𝑦 ! − 6𝑦(!)),

Predictor
7𝑤 = argmin

-
𝑀𝑆𝐸(𝑤)

Optimization Algorithm

Optimized using Gradient Descent

Prediction
6𝑦(!) = 7𝑤+ℎ(𝑋 !)

9

Higher Order
Features

This data doesn’t look exactly linear, why are we fitting a line
instead of some higher-degree polynomial?

We can! We just have to use a slightly different model!

𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + 𝑤'𝑥'

10

Polynomial
Regression

Model
𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + … + 𝑤(𝑥(

To capture a non-linear relationship in the model, we can
transform the original features into more features!

How do you train it? Gradient descent (with more parameters) 11

Feature Value Parameter

0 1 (constant) 𝑤$

1 𝑥 𝑤%

2 𝑥& 𝑤&

… … …

d 𝑥(𝑤(

Polynomial
Regression

How to decide what the right degree? Come back Wednesday!
12

Features

Features are the values we select or compute from the data
inputs to put into our model. Feature extraction is the process of
reduce the number of features in a dataset by creating new
features from the existing ones (and then discarding the original
features).

Model
𝑦 = 𝑤$ℎ$ 𝑥 + 𝑤%ℎ% 𝑥 + … + 𝑤)ℎ) 𝑥

= 0
*+$

)

𝑤*ℎ* 𝑥

13

Feature Value Parameter
0 ℎ$ 𝑥 often 1

(constant)
𝑤$

1 ℎ% 𝑥 𝑤%

2 ℎ&(𝑥) 𝑤&

… … …

d ℎ((𝑥) 𝑤,

Adding
Other
Features

Generally we are given a data table of values we might look at
that include more than one feature per house.

Each row is a data point.

Each column (except Value) represents a feature

The last column (Price) contains the actual output values

14

sq. ft. # bathrooms owner’s age … price

1400 3 47 … 70,800

700 3 19 … 65,000

… … … … …

1250 2 36 … 100,000

More Inputs -
Visually

Adding more features to the model allows for more complex
relationships to be learned

𝑦 = 𝑤$ + 𝑤% 𝑠𝑞. 𝑓𝑡. + 𝑤& # 𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚𝑠

Coefficients tell us the rate of change if all other features are
constant

15

Pre-Lecture
Video 2
Assessing Performance

16

Polynomial
Regression

How do we decide what the right choice of 𝑝 is?
17

Polynomial
Regression

Consider using different degree polynomials on the same training set.

From estimating with your eyes, which one seems to have the lowest
MSE on this dataset?

It seems like minimizing the MSE on the training set is not the whole
story here …

18

𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 20

Why a (near)
zero training
error is not a
good thing?

Why do we train ML models?

We generally want them to do well on unseen data.

If we choose the model that minimizes MSE on the data it learned
from, we are just choosing the model that can memorize, not the
one that generalizes well.

Analogy: Just because you can get 100% on a practice exam
you’ve studied for hours, it doesn’t mean you will also get
100% on the real test that you haven’t seen before. When
you overprepares for an exam through rote memorization,
you are not able to generalize your knowledge and transfer
what you have learned to solve new, unfamiliar problems.

Key Idea: Assessing yourself based on something you learned
from generally overestimates how well you will do in the future!

19

Performance
on unseen
data

What we care about is how well the model will do on unseen data.

How do we measure this? True error

To do this, we need to understand uncertainty in the world

True Error

20

Sq. Ft. Price | Sq. Ft.

Model
Assessment

How can we figure out how well a model will do on future data if
we don’t have any future data?

Estimate it! We can hide data from the model to test it later as
an estimate how it will do on future data

We will randomly split our dataset into a train set and a test set

The train set is to train the model

The test set is to estimate the performance in the future

21

Test Error What we really care about is the true error, or how well a model
perform on unseen data in the wild, but we can’t know that
without having an infinite amount of data!

We will use the test set to estimate the true error.

Note: The train and test set need to be randomly split in order for
the test set to be truly reflective of data in the real world.

Call the error on the test set the test error for a model B𝑓:

𝑀𝑆𝐸-./- =
1
𝑛
0

"∈1./-

𝑦(") − B𝑓 𝑥(")
&

If the test set is large enough, this can approximate the true error.
22

Train/Test Split If we use the test set to estimate future, how big should it be?

This comes at a cost of reducing the size of the training set
though (in the absence of being able to just get more data)

In practice people generally do train:test as either

80:20

90:10

Important: Never train your model on data in the test set!
23

Model
Complexity

24

Model
Complexity

There is not a well-defined way to measure the complexity of
a model. It depends on the nature of the models.

We usually associate it with the number of parameters. A
model with more parameters is usually more complex.

Example with polynomial regression:
- Model 1: 𝑦 = 𝑤$ + 𝑤%𝑥 (2 parameters)
- Model 2: 𝑦 = 𝑤$ + 𝑤%𝑥 + 𝑤&𝑥& + 𝑤'𝑥' (4 parameters)

We say that model 2 is more complex than model 1.

25

Training
Error

What happens to training error as we increase model complexity?

Start with the simplest model (a constant function)

End with a very high degree polynomial

26

True Error What happens to true error as we increase model complexity?

Start with the simplest model (a constant function)

End with a very high degree polynomial

27

Train/True
Error

Compare what happens to train and true error as a function of
model complexity

28

Error

Complexity

Train error

True error

Underfitting
Underfitting happens when a model cannot capture the complex
patterns between a training set’s features and its output values.

Underfitting is usually easy to fix because we can get a low training
error by:

- Removing uninformative features

- Using more complex models (by adding more features or
introducing more non-linearities to capture non-linear patterns)

29

Overfitting Overfitting happens when we too closely match the training data
and fail to generalize.

Overfitting occurs when you train a predictor '𝑤 but there exists
another predictor 𝑤′ from the same model class such that:

𝑒𝑟𝑟𝑜𝑟-23. 𝑤4 < 𝑒𝑟𝑟𝑜𝑟-23.('𝑤)

𝑒𝑟𝑟𝑜𝑟-25"6 𝑤4 > 𝑒𝑟𝑟𝑜𝑟-25"6('𝑤)

30

Error

Comp.

Underfitting /
Overfitting

The ability to overfit/underfit is a knob we can turn based on the
model complexity.

More complex => easier to overfit

Less complex => easier to underfit

In a bit, we will talk about how to chose the “just right”, but now
we want to look at this phenomena of overfitting/underfitting
from another perspective.

31Underfitting Optimal Overfitting

Bias-Variance
Tradeoff

32

Source of
errors
in a model

Total errors for a machine learning model comes from 3 types:

Bias

Variance

Irreducible Errors

Irreducible error is the one that we can’t avoid or possibly
eliminate. They are caused by elements outside of our control,
such as noise from observations.

33

Bias A model that is too simple fails to capture the complex patterns in
the dataset, which signifies a fundamental limitation of the model.
We call this a bias error.

Bias is the difference between the average prediction of our
model and the expected value which we are trying to predict.

Low complexity (simple) models tend to have high bias.
34

Variance A model that is too complicated for the task overly fits to small
fluctuations. The flexibility of the complicated model makes it capable
of memorizing answers rather than learning general patterns. This
contributes to the error as variance.

Variance is the variability in the model prediction, meaning how much
the predictions will change if a different training dataset is used.

High complexity models tend to have high variance.*

35

Bias-Variance
Tradeoff

Irreducible error remains unchanged.

Tradeoff between bias and variance:

Simple models: High bias + Low variance

Complex models: Low bias + High variance

Source of errors for a particular model B𝑓 using MSE loss function:

Error = Biased squared + Variance + Irreducible Error

36

Brain BreakBrain Break

37

Bias-Variance
Tradeoff

Visually, this looks like the following!
𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠& + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑖𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟

38
Complexity

Error

Bias –
Variance
Tradeoff

39
Complexity

Error

Biased squared

Variance

Total error

Underfitting

Optimal model
complexity

Overfitting

Dataset Size So far our entire discussion of error assumes a fixed amount of
data. What happens to our error as we get more data?

40
Size of train set

Error

Dataset Size Model complexity doesn’t depend on the size of the training set

The larger the training set, the lower the variance of the model,
thus less overfitting

41
Size of train set

Error

Train error

True error

Choosing
Complexity

42

Choosing
Complexity

So far we have talked about the affect of using different
complexities on our error. Now, how do we choose the right one?

43

pollev.com/cs416

ThinkThink
Goal: Get you actively participating in your learning

Typical Activity
- Question is posed
- Think (1 min): Think about the question on your own
- Pair (2 min): Talk with your neighbor to discuss question

- If you arrive at different conclusions, discuss your
logic and figure out why you differ!

- If you arrived at the same conclusion, discuss why
the other answers might be wrong!

- Share (1 min): We discuss the conclusions as a class

During each of the Think and Pair stages, you will respond to
the question via a Poll Everywhere poll

- The poll will only be open for the last 15 seconds of
each of the stage

- Not worth any points, just here to help you learn!

44

1 min

pollev.com/cs416

ThinkThink
Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

Train a model with degree p on the training set, pick p that
has the lowest test error

Train a model with degree p on the training set, pick p that
has the highest test error

Train a model with degree p on the test set, pick p that has
the lowest test error

Train a model with degree p on the test set, pick p that has
the highest test error

None of the above

45

1 min

pollev.com/cs416

ThinkThink
Suppose I wanted to figure out the right degree polynomial for
my dataset (we’ll try p from 1 to 20). What procedure should I
use to do this? Pick the best option

For each possible degree polynomial p:

Train a model with degree p on the training set, pick p that
has the lowest test error

Train a model with degree p on the training set, pick p that
has the highest test error

Train a model with degree p on the test set, pick p that has
the lowest test error

Train a model with degree p on the test set, pick p that has
the highest test error

None of the above

46

2 min

Choosing
Complexity

We can’t just choose the model that has the lowest train error because
that will favor models that overfit!

It then seems like our only other choice is to choose the model that has
the lowest test error (since that is our approximation of the true error)

This is almost right. However, the test set has been tampered, thus
is no longer is an unbiased estimate of the true error.

We didn’t technically train the model on the test set (that’s good),
but we chose which model to use based on the performance of the
test set.

- It’s no longer a stand in for “the unknown” since we probed it
many times to figure out which model would be best.

NEVER EVER EVER touch the test set until the end. You only use it ONCE
to evaluate the performance of the best model you have selected during
training.

47

Choosing
Complexity

We will talk about two ways to pick the model complexity
without ruining our test set.

Using a validation set

Doing cross validation

48

Validation Set So far we have divided our dataset into train and test

We can’t use Test to choose our model complexity, so instead,
break up Train into ANOTHER dataset

We will pick the model that does best on validation. Note that
this now makes the validation error of the “best” model a biased
estimate of true error. The test error will be an unbiased estimate
though since we never looked at it!

49

Train Test

Train Validation Test

Validation Set The process generally goes

train, validation, test = random_split(dataset)

for each model complexity p:

model = train_model(model_p, train)

val_err = error(model, validation)

keep track of p with smallest val_err

return best p + error(model, test)

50

Validation Set Pros

Easy to describe and implement

Pretty fast

- Only requires training a model and predicting on the
validation set for each complexity of interest

Cons

- Have to sacrifice even more training data

- Prone to overfitting

51

Cross
Validation

In the pre-lecture videos for next week, we will introduce another
way to perform validation called cross-validation.

We leave the slides here for reference, but we will cover this in
Monday’s class.

52

Cross-Validation Clever idea: Use many small validation sets without losing too
much training data.

Still need to break off our test set like before. After doing so,
break the training set into 𝑘 chunks.

For a given model complexity, train it 𝑘 times. Each time use all
but one chunk and use that left out chunk to determine the
validation error.

53

Train Test

Chunk1 Chunk2 Chunk3 Chunk4 Test

Cross
Validation

54

Validation Training

Error 1

Error 2

Error 3

Error k

Average
all errors

For a set of hyperparameters, perform Cross Validation on k folds

.

.

. . .

. . .

. . .

. . .

k folds

Cross-Validation The process generally goes

chunk_1, …, chunk_k, test = split_data(dataset)

for each model complexity p:

for i in [1, k]:

model = train_model(model_p, chunks - i)

val_err = error(model, chunk_i)

avg_val_err = average val_err over chunks

keep track of p with smallest avg_val_err

return model trained on train with best p +
error(model, test)

55

Cross-Validation Pros

- Prevent overfitting: By training the model on multiple folds instead of
only 1 training set, this allow the model with the best generalization
capabilities.

- Don’t have to actually get rid of any training data!

- Help find the optimal model (such as the best set of hyperparameters,
the best complexity)

Cons

- Very slow. For each model selection, we have to train 𝑘 times

- Very computationally expensive

56

Cross-Validation For best results, need to make 𝑘 really big

Theoretical best estimator is to use 𝑘 = 𝑛
- Called "Leave One Out Cross Validation”

In practice, people use 𝑘 = 5 to 10

Nowadays, with the rise of deep learning, people don’t use cross-
validation much. Datasets of large models contain millions of training
examples, which make them robust and overcome overfitting.

57

Recap Theme: Assess the performance of our models

Ideas:

Model complexity

Train vs. Test vs. True error

Overfitting and Underfitting

Bias-Variance Tradeoff

Error as a function of train set size

Choosing best model complexity
- Validation set
- Cross Validation

58

