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Precision What fraction of the examples I predicted positive were correct?

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶!"

𝐶!" + 𝐶#"
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Easily best sushi in Seattle.

I like the interior decoration and the 
blackboard menu on the wall. 

All the sushi was delicious.

The sushi was amazing, and 
the rice is just outstanding.

The seaweed salad was just OK, 
vegetable salad was just ordinary.

The service is somewhat hectic.

�

✘

�

�

�

✘ Only 4 out of 6 
sentences 

predicted to be 
positive are 

actually positive

Sentences predicted to be positive:
,𝑦$ = +1



Recall Of the truly positive examples, how many were predicted 
positive?

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝐶!"
𝑁"

=
𝐶!"

𝐶!" + 𝐶#%
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Classifier
MODEL

True positive 
sentences: yi=+1

Predicted positive ŷi=+1
Easily best sushi in Seattle.

I like the interior decoration and the 
blackboard menu on the wall. 

All the sushi was delicious.

The sushi was amazing, and 
the rice is just outstanding.

The seaweed salad was just OK, 
vegetable salad was just ordinary.

The service is somewhat hectic.

Predicted negative ŷi=-1
The seaweed salad was just OK, 
vegetable salad was just ordinary.

My wife tried their ramen and 
it was delicious. 

The service is somewhat hectic.

My wife tried their ramen and 
it was pretty forgettable. 

The service was perfect.

Sentences from 
all reviews 

for my restaurant



Document 
Retrieval

Consider you had some time to read a book and wanted to 
find other books similar to that one.

If we wanted to write an system to recommend books
- How do we measure similarity?
- How do we search over books?
- How do we measure accuracy?

Big Idea: Define an embedding and a similarity metric for the 
books, and find the “nearest neighbor” to some query book.
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query article

nearest neighbor



Predicting 
House Prices

When we saw regression before, we assumed there was some 
linear/polynomial function that produced the data. All we had to 
do was choose the right polynomial degree. 
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Predicting 
House Prices

What if instead, we didn’t try to find the global structure, but 
instead just tried to infer values using local information instead.

Big Idea: Use 1-nearest neighbor to predict the price of a house.

Not actually a crazy idea, something realtors do sometimes!
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1-NN 
Regression

Where 1𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the algorithm described yesterday to 
find the single nearest neighbor of a point.
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Input:	Query	point:	𝑥& ,	Training	Data:	𝒟 = 𝑥$ , 𝑦$ $'(
)

(𝑥%% , 𝑦%%) = 1𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥& , 𝒟)

Output:	𝑦%%



Visualizing 
1-NN 
Regression

The function learned by 1-NN is “locally constant” in each region 
nearest to each training point.  

Can visualize this with a Voronoi Tessellation

Shows all of the points that are “closest” to a particular 
training point

Not actually computed in practice, but helps understand
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Visualizing 
1-NN 
Regression

Like last time, how you define “closest” changes predictions
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Euclidean distance Manhattan distance



1-NN 
Regression

Weaknesses

Inaccurate if data is sparse

Can wildly overfit
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Fit looks good for data dense 
in x and low noise
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Fits can look quite wild…
Overfitting?



1-NN 
Classification

Can we use the same algorithm for classification? Yes!

Predict the class of the nearest neighbor. Besides that, exactly the 
same as regression.
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Prevent 
Overfitting

The downfalls of 1-NN come from it relies too much on a single 
data point (the nearest neighbor), which makes it susceptible to 
noise in the data.

More reliable estimate if you look at more than one house!

13

$ = ???
$ = 850k

$ = 749k

$ = 833k
$ = 901k

Input:	Query	point:	𝑥& ,	Training	Data:	𝒟 = 𝑥$ , 𝑦$ $'(
)

(𝑥%%! , 𝑦%%!), … , (𝑥%%" , 𝑦%%") = 𝑘𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥& , 𝒟, 𝑘)

Output:			 ,𝑦& =
(
*
∑+'(* 𝑦%%#



k-NN 
Regression

By using a larger 𝑘, we make the function a bit less crazy

Still discontinuous though (neighbor is either in or out)

Boundaries are still sort of a problem
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Issues with 
k-NN

While k-NN can solve some issues that 1-NN has, it brings some 
more to the table.

Have to choose right value of k.
- If k is too large, model is too simple

Discontinuities matter in many applications
- The error might be good, but would you believe a price 

jump for a 2640 sq.ft. house to a 2641 sq.ft. house?

Seems to do worse at the boundaries still
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Weighted 
k-NN

Big Idea: Instead of treating each neighbor equally, put more 
weight on closer neighbors.

Predict:

,𝑦& =
∑+'(
* 𝑐&,%%#𝑦

%%#

∑+'(
* 𝑐&,%%#

Reads: Weight each nearest neighbor by some value 𝑐&,%%#

How to choose 𝑐&,%%#?
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Want 𝑐&,%%# to be small if 

𝑑𝑖𝑠𝑡 𝑥& , 𝑥%%# is large.

Want 𝑐&,%%# to be large if 

𝑑𝑖𝑠𝑡 𝑥& , 𝑥%%# is small.



(Optional)
Kernels

Use a function called a kernel to turn distance into weight that 
satisfies the properties we listed before.

𝑐&,%%# = 𝐾𝑒𝑟𝑛𝑒𝑙-(𝑑𝑖𝑠𝑡 𝑥& , 𝑥%%# )
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−𝜆 0 𝜆
Gaussian Kernel

𝐾𝑒𝑟𝑛𝑒𝑙- 𝑑𝑖𝑠𝑡 𝑥$ , 𝑥& = exp −
𝑑𝑖𝑠𝑡 𝑥$ , 𝑥&

.

𝜆



(Optional)
Kernel 
Regression

We can take this one step farther, instead of just using a kernel to 
weight the k nearest neighbors, can use the kernel to weight all 
training points! This is called kernel regression.

!𝑦! =
∑!"#
$ #%,!$!
∑!"#
$ #%,!

=
∑!"#
$ %&'(&)' *+,- .!,.% $!
∑!"#
$ %&'(&)' *+,- .!,.%
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(Optional)
Visualizing 
Kernel 
Regression

This kernel has bounded support, only look at values ±𝜆 away
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(Optional)
Choose 
Bandwidth 𝜆

Often, which kernel you use matters much less than which value 
you use for the bandwidth 𝜆

How to choose? Cross validation or a validation set to choose

Kernel

Bandwidth

K (if using weighted k-NN, not needed for kernel regression)
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pollev.com/cs416

ThinkThinkThink
In a few sentences, compare and contrast the following ML 
models.

k-Nearest Neighbor Regression

Weighted k-Nearest Neighbor Regression

Kernel Regression

21

1.5 min



pollev.com/cs416

ThinkThinkThink
In a few sentences, compare and contrast the following ML 
models.

k-Nearest Neighbor Regression

Weighted k-Nearest Neighbor Regression

Kernel Regression
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Efficient 
Nearest 
Neighbors
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Nearest 
Neighbor 
Efficiency

Nearest neighbor methods are good because they require no 
training time (just store the data, compute NNs when predicting).

How slow can that be? Very slow if there is a lot of data!

𝒪(𝑛) if there are 𝑛 data points.

If 𝑛 is in the hundreds of billions, this will take a while…

There is not an obvious way of speeding this up unfortunately.

Big Idea: Sacrifice accuracy for speed. We will look for an 
approximate nearest neighbor to return results faster
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Approximate 
Nearest 
Neighbor

Don’t find the exact NN, find one that is “close enough”.

Many applications are okay with approximate answers

The measure of similarity is not perfect

Clients probably can’t tell the difference between the most 
similar book and a book that’s pretty similar.

We will use locality sensitive hashing to answer this 
approximate nearest neighbor problem.

High level approach

Design an algorithm that yields a close neighbor with high 
probability

These algorithms usually come with a “guarantee” of what 
probability they will succeed, won’t discuss that in detail but 
is important when making a new approximation algorithm.
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Locality 
Sensitive 
Hashing 
(LSH)

Locality Sensitive Hashing is an algorithm that answers the 
approximate nearest neighbor problem. 

Big Idea

Break the data into smaller bins based on how close they are 
to each other

When you want to find a nearest neighbor, choose an 
appropriate bin and do an exact nearest neighbor search for 
the points in that bin.

More bins → Fewer points per bin → Faster search

More bin → More likely to make errors if we aren’t careful
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Binning How do we make the bins?

What if we pick some line that separates the data and then put 
them into bins based on the 𝑆𝑐𝑜𝑟𝑒(𝑥) for that line?

Looks like classification, but we don’t have labelled data here. 
Will explain shortly how to find this line.  
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Binning Put the data in bins based on the sign of the score (2 bins total)

Call negative score points bin 0, and the other bin 1 (bin index)
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2D Data Sign(Score) Bin index
x1 = [0, 5] -1 0
x2 = [1, 3] -1 0
x3 = [3, 0] 1 1
… … …
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1.0 #awesome – 1.5 #awful = 0

Sign(Score(x)) = +1

Sign(Score(x)) = -1



Binning Put the data in bins based on the sign of the score (2 bins total)

Call negative score points bin 0, and the other bin 1 (bin index)
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When asked to find 
neighbor for query point, 
only search through points 
in the same bin!

This reduces the search 
time to )

.
if we choose the 

line right.

#a
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…

1.0 #awesome – 1.5 #awful = 0

Only search here for 
queries with Score(x)>0

Only search here for 
queries with Score(x)<0

candidate 
neighbors if 
Score(x)<0

Query point x

2D Data Sign(Score) Bin index
x1 = [0, 5] -1 0

x2 = [1, 3] -1 0

x3 = [3, 0] 1 1

… … …



LSH with 
2 bins

Create a table of all data points and calculate their bin index 
based on some chosen line

Store it in a hash table for fast lookup 

When searching for a point 𝑥& : 

Find its bin index based on that line

Search over the points in that bin 30

2D Data Sign(Score) Bin index
x1 = [0, 5] -1 0
x2 = [1, 3] -1 0
x3 = [3, 0] 1 1
… … …

Bin 0 1
List containing indices 
of datapoints:

{1,2,4,7,…} {3,5,6,8,…}
HASH 
TABLE



pollev.com/cs416

ThinkThinkThink
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returned for searching for the nearest neighbor of the green 
query point?



Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into 
separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…
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How to 
choose line?

Wild Idea: Choose the line randomly!

Choose a slope randomly between 0 and 90 degrees

How bad can randomly picking it be?

If two points have a small cosine distance, it is unlikely that 
we will split them into different bins!
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Some Issues 1. How do we find a good line that divides the data in half?

2. Potential Errors: Points close together might be split up into 
separate bins

3. Large computation cost: Only dividing the points in half 
doesn’t speed things up that much…
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Brain BreakBrain BreakBrain Break
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More Bins Can reduce search cost by adding more lines, increasing the 
number of bins.

For example, if we use 3 lines, we can make more bins!
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LSH with 
Many Bins

Create a table of all data points and calculate their bin index 
based on some chosen lines. Store points in hash table indexed 
by all bin indexes

When searching for a point 𝑥& : 

Find its bin index based on the lines

Only search over the points in that bin
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Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] = 
2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0]
= 6

[1 1 1] 
= 7

Data 
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

2D Data Sign
(Score1)

Bin 1 
index

Sign
(Score2)

Bin 2 
index

Sign
(Score3)

Bin 3 
index

x1 = [0, 5] -1 0 -1 0 -1 0
x2 = [1, 3] -1 0 -1 0 -1 0
x3 = [3, 0] 1 1 1 1 1 1
… … … … … … …



LSH Example Imagine my query point was (2, 2)

This has bin index [0 1 0] 

By using multiple bins, we have reduced the search time! 

However, it’s more likely that we separate points from their true 
nearest neighbors since we do more splits L

Often with approximate methods, there is a tradeoff between 
speed and accuracy. 
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= 7

Data 
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}



Improve 
Quality

The nice thing about LSH is we can actually tune this tradeoff by 
looking at nearby bins. If we spend longer searching, we are likely 
to find a better answer.

What does ”nearby” mean for bins?

In practice, set some time “budget” and 
keep searching nearby bins until budget
runs out 39

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] = 
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[0 1 1] 
= 3

[1 0 0] 
= 4
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[1 1 0] = 
6
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= 7

Data 
indices:

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6}

Next closest 
bins
(flip 1 bit)
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Locality 
Sensitive 
Hashing 
(LSH)

Pre-Processing Algorithm

Draw ℎ lines randomly

For each data point, compute 𝑆𝑐𝑜𝑟𝑒 𝑥$ for each line

Translate the scores into binary indices

Use binary indices as a key to store the point in a hash table

Querying LSH

For query point 𝑥& compute 𝑆𝑐𝑜𝑟𝑒(𝑥&) for each of the ℎ lines

Translate scores into binary indices. Lookup all data points 
that have the same key.

Do exact nearest neighbor search just on this bin.

If there is more time in the computation budget, go look at 
nearby bins until this budget runs out.
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Higher 
Dimensions

Pick random hyper-plane to separate points for points in higher 
dimensions. 

Unclear how to pick ℎ for LSH and you can’t do cross-validation 
here (why?)

Generally people use ℎ ≈ log(𝑑)
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Recap Theme: Use local methods for classification and regression and 
speed up nearest neighbor search with approximation methods.

Ideas:

1-NN Regression and Classification

k-NN Regression and Classification 

Weighted k-NN vs Kernel Regression

Locality Sensitive Hashing
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